
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3135061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable and Sustainable Energy Reviews, 2019, 116, 109426.	8.2	248
2	Nitrogen transformations during fast pyrolysis of sewage sludge. Fuel, 2013, 104, 1-6.	3.4	217
3	Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel, 2016, 169, 93-98.	3.4	173
4	In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst. Fuel Processing Technology, 2017, 160, 19-26.	3.7	155
5	Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal-loaded mesoporous HZSM-5. Fuel, 2018, 218, 33-40.	3.4	149
6	Biomass thermochemical conversion: A review on tar elimination from biomass catalytic gasification. Journal of the Energy Institute, 2020, 93, 1083-1098.	2.7	138
7	Methanation of syngas from biomass gasification: An overview. International Journal of Hydrogen Energy, 2020, 45, 4223-4243.	3.8	119
8	Catalytic Conversion of Coal and Biomass Volatiles: A Review. Energy & Fuels, 2020, 34, 10307-10363.	2.5	110
9	Influences of pyrolysis conditions in the production and chemical composition of the bio-oils from fast pyrolysis of sewage sludge. Journal of Analytical and Applied Pyrolysis, 2014, 110, 353-362.	2.6	107
10	Synthesis gas production from catalytic gasification of waste biomass using nickel-loaded brown coal char. Fuel, 2013, 103, 135-140.	3.4	99
11	Catalytic reforming of volatiles and nitrogen compounds from sewage sludge pyrolysis to clean hydrogen and synthetic gas over a nickel catalyst. Fuel Processing Technology, 2014, 123, 34-40.	3.7	98
12	Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor. Electrochimica Acta, 2017, 252, 397-407.	2.6	96
13	Layered uniformly delocalized electronic structure of carbon supported Ni catalyst for catalytic reforming of toluene and biomass tar. Energy Conversion and Management, 2019, 183, 182-192.	4.4	96
14	Enhancement of light aromatics from catalytic fast pyrolysis of cellulose over bifunctional hierarchical HZSM-5 modified by hydrogen fluoride and nickel/hydrogen fluoride. Bioresource Technology, 2019, 278, 116-123.	4.8	90
15	Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge. Bioresource Technology, 2010, 101, 7648-7652.	4.8	85
16	Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste. Bioresource Technology, 2011, 102, 2009-2015.	4.8	85
17	Effect of atmosphere on carbon deposition of Ni/Al2O3 and Ni-loaded on lignite char during reforming of toluene as a biomass tar model compound. Fuel, 2018, 217, 515-521.	3.4	80
18	Formation of aromatics and removal of nitrogen in catalytic fast pyrolysis of sewage sludge: A study of sewage sludge and model amino acids. Fuel, 2018, 218, 148-154.	3.4	79

#	Article	IF	CITATIONS
19	Difference in chemical composition of carbon disulfide-extractable fraction between vitrinite and inertinite from Shenfu-Dongsheng and Pingshuo coals. Fuel, 2008, 87, 565-575.	3.4	77
20	Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor. Journal of Power Sources, 2017, 361, 249-258.	4.0	77
21	Organic oxygen transformation during pyrolysis of Baiyinhua lignite. Journal of Analytical and Applied Pyrolysis, 2016, 117, 106-115.	2.6	76
22	Ruthenium Ion-Catalyzed Oxidation of Shenfu Coal and Its Residues. Energy & Fuels, 2008, 22, 1799-1806.	2.5	74
23	Acid washed lignite char supported bimetallic Ni-Co catalyst for low temperature catalytic reforming of corncob derived volatiles. Energy Conversion and Management, 2019, 196, 1257-1266.	4.4	69
24	Characterizations of the Extracts from Geting Bituminous Coal by Spectrometries. Energy & Fuels, 2013, 27, 3709-3717.	2.5	64
25	Preparation of high-dispersion Ni/C catalyst using modified lignite as carbon precursor for catalytic reforming of biomass volatiles. Fuel, 2017, 202, 345-351.	3.4	63
26	Fast Pyrolysis of Rice Husk in a Fluidized Bed: Effects of the Gas Atmosphere and Catalyst on Bio-oil with a Relatively Low Content of Oxygen. Energy & Fuels, 2011, 25, 4113-4121.	2.5	62
27	The effects of temperature on product yields and composition of bio-oils in hydropyrolysis of rice husk using nickel-loaded brown coal char catalyst. Journal of Analytical and Applied Pyrolysis, 2012, 94, 238-245.	2.6	62
28	Characterization of a bio-oil from pyrolysis of rice husk by detailed compositional analysis and structural investigation of lignin. Bioresource Technology, 2012, 116, 114-119.	4.8	62
29	Catalytic steam gasification of biomass in fluidized bed at low temperature: Conversion from livestock manure compost to hydrogen-rich syngas. Biomass and Bioenergy, 2010, 34, 1505-1512.	2.9	61
30	Catalytic Reforming of Volatiles from Biomass Pyrolysis for Hydrogen-Rich Gas Production over Limonite Ore. Energy & Fuels, 2017, 31, 4054-4060.	2.5	61
31	Nitrogen migration mechanism and formation of aromatics during catalytic fast pyrolysis of sewage sludge over metal-loaded HZSM-5. Fuel, 2019, 244, 151-158.	3.4	61
32	High-performance electrode material for electric double-layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2. Applied Surface Science, 2020, 508, 144536.	3.1	60
33	Fundamentals and applications of char in biomass tar reforming. Fuel Processing Technology, 2021, 216, 106782.	3.7	59
34	Preparation of nickel-loaded on lignite char for catalytic gasification of biomass. Fuel Processing Technology, 2015, 136, 17-24.	3.7	58
35	Enhancement of Aromatic Products from Catalytic Fast Pyrolysis of Lignite over Hierarchical HZSM-5 by Piperidine-Assisted Desilication. ACS Sustainable Chemistry and Engineering, 2018, 6, 1792-1802.	3.2	58
36	Preparation of hierarchical HZSM-5 based sulfated zirconium solid acid catalyst for catalytic upgrading of pyrolysis vapors from lignite pyrolysis. Fuel, 2019, 237, 1079-1085.	3.4	58

#	Article	IF	CITATIONS
37	Selective cleavage of ether C-O bond in lignin-derived compounds over Ru system under different H-sources. Fuel, 2021, 284, 119027.	3.4	58
38	Bimetallic effects in the catalytic hydrogenolysis of lignin and its model compounds on Nickel-Ruthenium catalysts. Fuel Processing Technology, 2019, 194, 106126.	3.7	57
39	Preparation and characterization of nickel loaded on resin char as tar reforming catalyst for biomass gasification. Journal of Analytical and Applied Pyrolysis, 2017, 127, 82-90.	2.6	56
40	Increasing light aromatic products during upgrading of lignite pyrolysis vapor over Co-modified HZSM-5. Journal of Analytical and Applied Pyrolysis, 2018, 130, 190-197.	2.6	56
41	Nitrogen Evolution during Fast Pyrolysis of Sewage Sludge under Inert and Reductive Atmospheres. Energy & Fuels, 2017, 31, 7191-7196.	2.5	54
42	Mechanism of Ni-catalyzed selective C O cleavage of lignin model compound benzyl phenyl ether under mild conditions. Journal of the Energy Institute, 2019, 92, 74-81.	2.7	51
43	Highly active and stable HF acid modified HZSM-5 supported Ni catalysts for steam reforming of toluene and biomass pyrolysis tar. Energy Conversion and Management, 2020, 212, 112799.	4.4	50
44	Low-temperature catalytic gasification of sewage sludge-derived volatiles to produce clean H2-rich syngas over a nickel loaded on lignite char. International Journal of Hydrogen Energy, 2014, 39, 9193-9199.	3.8	49
45	Influence of manure types and pyrolysis conditions on the oxidation behavior of manure char. Bioresource Technology, 2009, 100, 4278-4283.	4.8	48
46	KOH activation of a HyperCoal to develop activated carbons for electric double-layer capacitors. Journal of Analytical and Applied Pyrolysis, 2014, 105, 116-121.	2.6	48
47	Recent advances in pyrolysis of cellulose to value-added chemicals. Fuel Processing Technology, 2022, 229, 107175.	3.7	47
48	Sulfation-acidified HZSM-5 catalyst for in-situ catalytic conversion of lignite pyrolysis volatiles to light aromatics. Fuel, 2019, 255, 115784.	3.4	46
49	Catalytic conversion of lignite pyrolysis volatiles to light aromatics over ZSM-5: SiO2/Al2O3 ratio effects and mechanism insights. Journal of Analytical and Applied Pyrolysis, 2019, 139, 22-30.	2.6	46
50	Biomass-derived three-dimensional hierarchical porous carbon network for symmetric supercapacitors with ultra-high energy density in ionic liquid electrolyte. Electrochimica Acta, 2021, 371, 137825.	2.6	44
51	Isolation and Identification of Fatty Acid Amides from Shengli Coal. Energy & Fuels, 2008, 22, 2419-2421.	2.5	43
52	Study on pine sawdust pyrolysis behavior by fast pyrolysis under inert and reductive atmospheres. Journal of Analytical and Applied Pyrolysis, 2017, 125, 279-288.	2.6	43
53	Three-Dimensional Hierarchical Porous Carbon with High Oxygen Content Derived from Organic Waste Liquid with Superior Electric Double Layer Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 4037-4046.	3.2	42
54	Recent progress and perspectives of catalyst design and downstream integration in biomass tar reforming. Chemical Engineering Journal, 2022, 429, 132316.	6.6	42

#	Article	IF	CITATIONS
55	Photocatalytic depolymerization of rice husk over TiO2 with H2O2. Fuel Processing Technology, 2014, 117, 8-16.	3.7	41
56	Hydrodeoxygenation of lignin model compounds to alkanes over Pd–Ni/HZSM-5 catalysts. Journal of the Energy Institute, 2020, 93, 899-910.	2.7	40
57	Extension of catalyst lifetime by doping of Ce in Ni-loaded acid-washed Shengli lignite char for biomass catalytic gasification. Catalysis Science and Technology, 2017, 7, 5741-5749.	2.1	39
58	N/O co-doped interlinked porous carbon nanoflakes derived from soybean stalk for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2020, 871, 114288.	1.9	38
59	Synergic effect of methanol and water on pine liquefaction. Bioresource Technology, 2013, 142, 504-509.	4.8	37
60	Effect of zeolite structure on light aromatics formation during upgrading of cellulose fast pyrolysis vapor. Journal of the Energy Institute, 2019, 92, 1567-1576.	2.7	37
61	N/O co-doped porous interconnected carbon nanosheets from the co-hydrothermal treatment of soybean stalk and nickel nitrate for high-performance supercapacitors. Journal of Colloid and Interface Science, 2020, 558, 211-219.	5.0	37
62	Comparative evaluation of tar steam reforming over graphitic carbon supported Ni and Co catalysts at low temperature. Energy Conversion and Management, 2021, 244, 114454.	4.4	37
63	Catalytic hydrogenation of aromatic ring over ruthenium nanoparticles supported on α-Al2O3 at room temperature. Applied Catalysis B: Environmental, 2022, 307, 121137.	10.8	37
64	In Situ Upgrading of Cellulose Pyrolysis Volatiles Using Hydrofluorinated and Platinum-Loaded HZSM-5 for High Selectivity Production of Light Aromatics. Industrial & Engineering Chemistry Research, 2019, 58, 22193-22201.	1.8	36
65	Nitrogen transformation during gasification of livestock compost over transition metal and Ca-based catalysts. Fuel, 2015, 140, 477-483.	3.4	35
66	Characterization of the oxidation products of Shengli lignite using mass spectrometers with "hardâ€ , "soft―and ambient ion sources. Fuel, 2016, 183, 115-122.	3.4	35
67	Heteroatom nitrogen and oxygen co-doped three-dimensional honeycomb porous carbons for methylene blue efficient removal. Applied Surface Science, 2021, 546, 149139.	3.1	35
68	Preparation of layered-porous carbon from coal tar pitch narrow fractions by single-solvent extraction for superior cycling stability electric double layer capacitor application. Journal of Colloid and Interface Science, 2020, 567, 347-356.	5.0	34
69	Theoretical insight into the hydrogenolysis mechanism of lignin dimer compounds based on experiments. Renewable Energy, 2021, 163, 1831-1837.	4.3	33
70	Triacetonamine formation in a bio-oil from fast pyrolysis of sewage sludge using acetone as the absorption solvent. Bioresource Technology, 2010, 101, 4242-4245.	4.8	32
71	Sequential extraction and thermal dissolution of Shengli lignite. Fuel Processing Technology, 2015, 135, 20-24.	3.7	31
72	Insight into the structural features of low-rank coals using comprehensive two dimensional gas chromatography/time-of-flight mass spectrometry. Fuel, 2018, 212, 293-301.	3.4	31

#	Article	IF	CITATIONS
73	Synthesis of ZSM-5 using different silicon and aluminum sources nature for catalytic conversion of lignite pyrolysis volatiles to light aromatics. Fuel, 2020, 268, 117286.	3.4	31
74	Multifunctional and highly active Ni/microfiber attapulgite for catalytic hydroconversion of model compounds and coal tars. Fuel Processing Technology, 2015, 134, 39-45.	3.7	30
75	Selective cleavage of C O bond in benzyl phenyl ether over Pd/AC at room temperature. Fuel Processing Technology, 2019, 188, 190-196.	3.7	30
76	Influence of Hollow ZSM-5 Zeolites Prepared by Treatment with Different Alkalis on the Catalytic Conversion of Methanol to Aromatics. Energy & Fuels, 2020, 34, 14633-14646.	2.5	30
77	Selective cleavage of lignin-derived diphenyl ether C-O bond over weakly acidic Ni/Nb2O5 catalyst. Fuel, 2021, 295, 120635.	3.4	29
78	Identification of Organic Chlorines and Iodines in the Extracts from Hydrotreated Argonne Premium Coal Residues. Energy & Fuels, 2007, 21, 2238-2239.	2.5	28
79	Rapid characterization of heteroatomic molecules in a bio-oil from pyrolysis of rice husk using atmospheric solids analysis probe mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2015, 115, 16-23.	2.6	28
80	One-step Preparation of Alkaline Lignin-based Activated Carbons with Different Activating Agents for Electric Double Layer Capacitor. International Journal of Electrochemical Science, 2017, 12, 7227-7239.	0.5	28
81	Hydrogenolysis of lignin-derived aryl ethers to monomers over a MOF-derived Ni/N–C catalyst. Reaction Chemistry and Engineering, 2020, 5, 886-895.	1.9	28
82	Catalytic reforming of lignite pyrolysis volatiles over sulfated HZSM-5: Significance of the introduced extra-framework Al species. Fuel, 2020, 273, 117789.	3.4	28
83	Electric Double-Layer Capacitors from Activated Carbon Derived from Black Liquor. Energy & Fuels, 2010, 24, 1889-1893.	2.5	27
84	HyperCoal-derived porous carbons with alkaline hydroxides and carbonate activation for electric double-layer capacitors. Fuel Processing Technology, 2014, 125, 251-257.	3.7	27
85	Highly selective aromatic ring hydrogenation of lignin-derived compounds over macroporous Ru/Nb2O5 with the lost acidity at room temperature. Fuel, 2020, 282, 118869.	3.4	27
86	Insights into coke location of catalyst deactivation during in-situ catalytic reforming of lignite pyrolysis volatiles over cobalt-modified zeolites. Applied Catalysis A: General, 2021, 613, 118018.	2.2	27
87	Preparation of porous carbons from waste sugar residue for high performance electric double-layer capacitor. Fuel Processing Technology, 2017, 162, 45-54.	3.7	26
88	Understandings of Catalyst Deactivation and Regeneration during Biomass Tar Reforming: A Crucial Review. ACS Sustainable Chemistry and Engineering, 2021, 9, 17186-17206.	3.2	26
89	Study of Catalytic Hydropyrolysis of Rice Husk under Nickel-Loaded Brown Coal Char. Energy & Fuels, 2011, 25, 5438-5443.	2.5	25
90	A highly active Ni/mesoporous attapulgite for hydrocracking CO bonds in rice straw. Fuel Processing Technology, 2015, 131, 376-381.	3.7	25

#	Article	IF	CITATIONS
91	Electrochemical and direct C–H methylthiolation of electron-rich aromatics. Green Chemistry, 2020, 22, 4906-4911.	4.6	25
92	Hydrogen bonding interactions between the organic oxygen/nitrogen monomers of lignite and water molecules: A DFT and AIM study. Fuel Processing Technology, 2017, 168, 58-64.	3.7	24
93	Preparation of porous carbon spheres from 2-keto-l-gulonic acid mother liquor by oxidation and activation for electric double-layer capacitor application. Journal of Colloid and Interface Science, 2018, 513, 20-27.	5.0	24
94	Facial fabrication of yolk-shell Pd-Ni-P alloy with mesoporous structure as an advanced catalyst for methanol electro-oxidation. Applied Surface Science, 2019, 484, 441-445.	3.1	24
95	Green and facile synthesis of porous carbon spheres from waste solution for high performance all-solid-state symmetric supercapacitors. International Journal of Hydrogen Energy, 2021, 46, 32373-32384.	3.8	24
96	Dewaxing from Stalks with Petroleum Ether by Different Methods. Energy & Fuels, 2007, 21, 1165-1168.	2.5	23
97	Decomposition of NO _{<i>x</i>} Precursors during Gasification of Wet and Dried Pig Manures and Their Composts over Ni-based Catalysts. Energy & Fuels, 2014, 28, 2041-2046.	2.5	23
98	Carbonâ€Based Materialâ€5upported Palladium Nanocatalysts in Coupling Reactions: Discussion on their Stability and Heterogeneity. Applied Organometallic Chemistry, 2020, 34, e5539.	1.7	23
99	Selective Cleavage of the Diphenyl Ether C–O Bond over a Ni Catalyst Supported on AC with Different Pore Structures and Hydrophilicities. Energy & Fuels, 2021, 35, 9599-9608.	2.5	23
100	Low temperature catalytic gasification of pig compost to produce H2 rich gas. Bioresource Technology, 2011, 102, 2033-2039.	4.8	22
101	Mechanism for catalytic hydrodenitrogenation of isoquinoline. Fuel Processing Technology, 2013, 106, 661-665.	3.7	21
102	Molecular characteristics of a Chinese coal analyzed using mass spectrometry with various ionization modes. Fuel, 2015, 155, 122-127.	3.4	21
103	Encapsulation Ni in HZSM-5 for catalytic hydropyrolysis of biomass to light aromatics. Fuel Processing Technology, 2021, 218, 106854.	3.7	21
104	Selective hydrogenolysis of C-O bonds in lignin and its model compounds over a high-performance Ru/AC catalyst under mild conditions. Chemical Engineering Science, 2022, 253, 117554.	1.9	21
105	Comprehensive research of in situ upgrading of sawdust fast pyrolysis vapors over HZSM-5 catalyst for producing renewable light aromatics. Journal of the Energy Institute, 2020, 93, 15-24.	2.7	20
106	Sequential ultrasonic extraction of a Chinese coal and characterization of nitrogenâ€containing compounds in the extracts using highâ€performance liquid chromatography with mass spectrometry. Journal of Separation Science, 2016, 39, 2491-2498.	1.3	18
107	Boosting hydrogen evolution activity and durability of Pd–Ni–P nanocatalyst via crystalline degree and surface chemical state modulations. International Journal of Hydrogen Energy, 2019, 44, 31053-31061.	3.8	18
108	Study on hydrodeoxygenation mechanism of anisole over Ni (111) by first-principles calculation. Molecular Catalysis, 2022, 523, 111402.	1.0	18

#	Article	IF	CITATIONS
109	Formation of Light Aromatics and Coke during Catalytic Reforming of Biopolymer-Derived Volatiles over HZSM-5. Industrial & Engineering Chemistry Research, 2021, 60, 12521-12533.	1.8	18
110	Direct synthesis of oxygen-enriched 3D porous carbons via NaCl template derived from oxidized coal tar pitch for excellent cycling stability electric double layer capacitor. Journal of Power Sources, 2021, 508, 230330.	4.0	18
111	Effect of coal ranks on light aromatics production during reforming of pyrolysis volatiles over HZSM-5 under Ar and H2-assisted atmospheres. Journal of Analytical and Applied Pyrolysis, 2020, 152, 104958.	2.6	17
112	Transforming waste sugar solution into N-doped hierarchical porous carbon for high performance supercapacitors in aqueous electrolytes and ionic liquid. International Journal of Hydrogen Energy, 2020, 45, 31367-31379.	3.8	17
113	Controllable hollow HZSM-5 for high shape-selectivity to light aromatics from catalytic reforming of lignite pyrolysis volatiles. Fuel, 2021, 294, 120427.	3.4	17
114	High Surface Area Activated Carbon Prepared from Black Liquor in the Presence of High Alkali Metal Content. Journal of Chemical Engineering of Japan, 2010, 43, 1029-1034.	0.3	16
115	Catalytic upgrading of coal tar coupling with methanol using model compound over hierarchal ZSM-5 for increasing light aromatic production under atmosphere pressure. Fuel Processing Technology, 2021, 211, 106600.	3.7	16
116	In situ one–pot synthesis of Sn/lignite–based porous carbon composite for enhanced lithium storage. Journal of Colloid and Interface Science, 2021, 587, 367-375.	5.0	16
117	Catalytic Upgrading of Cellulose Pyrolysis Volatiles over Ce Modified Hierarchical ZSM-5 Zeolite: Insight into the Effect of Acid Properties on Light Aromatics and Catalyst Stability. Industrial & Engineering Chemistry Research, 2022, 61, 287-298.	1.8	16
118	Waste sugar solution polymer-derived N-doped carbon spheres with an ultrahigh specific surface area for superior performance supercapacitors. International Journal of Hydrogen Energy, 2021, 46, 22735-22746.	3.8	15
119	Catalytic reforming of nitrogen-containing volatiles evolved through pyrolysis of composted pig manure. Bioresource Technology, 2013, 150, 181-186.	4.8	14
120	Catalytic Fast Pyrolysis of Sewage Sludge over HZSM-5: A Study of Light Aromatics, Coke, and Nitrogen Migration under Different Atmospheres. Industrial & Engineering Chemistry Research, 2020, 59, 17537-17545.	1.8	14
121	Mechanism for catalytic cracking of coal tar over fresh and reduced LaNi1-xFexO3 perovskite. Fuel, 2021, 288, 119683.	3.4	14
122	Rapid synthesis of Cu ₂ O hollow spheres at low temperature and their catalytic performance for the decomposition of ammonium perchlorate. CrystEngComm, 2021, 23, 7985-7993.	1.3	14
123	Catalytic Hydrodeoxygenation of Lignin and Its Model Compounds to Hydrocarbon Fuels over a Metal/Acid Ru/HZSM-5 Catalyst. Energy & Fuels, 2021, 35, 19543-19552.	2.5	14
124	Nickel loaded on biochar prepared from different carbon sources for selective hydrogenolysis of diphenyl ether. Fuel Processing Technology, 2022, 231, 107219.	3.7	14
125	Identification of Sulfur- and Nitrogen-containing Organic Species in the Extracts from Pocahontas No. 3 Coal. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2010, 32, 1086-1099.	1.2	13
126	H2 production from fowl manure by low temperature catalytic gasification. Bioresource Technology, 2011, 102, 7561-7566.	4.8	13

#	Article	IF	CITATIONS
127	Analysis of soluble components in coals and interpretations for the complex mass spectra. Rapid Communications in Mass Spectrometry, 2017, 31, 503-508.	0.7	13
128	Nano WO ₃ atalyzed Oneâ€Pot Process for Mild Oxidative Depolymerization of Lignin and its Model Compounds. ChemCatChem, 2021, 13, 3836-3845.	1.8	13
129	Hydrodeoxygenation of lignin and its model compounds to hydrocarbon fuels over a bifunctional Ga-doped HZSM-5 supported metal Ru catalyst. Applied Catalysis A: General, 2022, 633, 118516.	2.2	13
130	Characterization of a Chinese lignite and the corresponding derivatives using direct analysis in real time quadrupole time-of-flight mass spectrometry. RSC Advances, 2016, 6, 105780-105785.	1.7	12
131	Effect of A-site disubstituted of lanthanide perovskite on catalytic activity and reaction kinetics analysis of coal combustion. Fuel, 2020, 260, 116380.	3.4	12
132	Sustainable Porous Carbon with High Specific Surface Area from Soybean Shell via Hydrothermal Carbonization with H ₃ PO ₄ for Electric Double‣ayer Capacitor Applications. Energy Technology, 2020, 8, 1901103.	1.8	12
133	In situ reforming of lignite pyrolysis volatiles for enriching light aromatics over Ga substituted HZSM-5. Chemical Engineering Science, 2022, 248, 117235.	1.9	12
134	Identification of Octathiocane, Organonitrogens, and Organosulfurs in Tongchuan Shale. Energy & Fuels, 2007, 21, 1193-1194.	2.5	11
135	Effect of pretreatment with different washing methods on the reactivity of manure char. Bioresource Technology, 2010, 101, 6130-6135.	4.8	11
136	Nitrogen Conversion of Pig Compost during Pyrolysis. Journal of Chemical Engineering of Japan, 2013, 46, 556-561.	0.3	11
137	Synthesis of NiO/Activated Carbon Composites and Their Application as Electrode Materials for Capacitors. International Journal of Electrochemical Science, 2017, , 2704-2718.	0.5	11
138	MOF-derived Ru@ZIF-8 catalyst with the extremely low metal Ru loading for selective hydrogenolysis of C–O bonds in lignin model compounds under mild conditions. Catalysis Science and Technology, 2022, 12, 488-496.	2.1	11
139	Water-involved tandem conversion of aryl ethers to alcohols over metal phosphide catalyst. Chemical Engineering Journal, 2022, 435, 134911.	6.6	11
140	Mechanism Study on Nitrogen Migration and Catalytic Denitrification during the Pyrolysis of Lysine and Tryptophan. Energy & Fuels, 2022, 36, 502-513.	2.5	11
141	Molecular composition of soluble organic species in Baiyinhua lignite and their evolution profiles during pyrolysis. Fuel, 2017, 205, 192-197.	3.4	10
142	Comparison of Kinetics and Activity of Niâ€Based Catalysts for Benzyl Phenyl Ether Catalytic Hydrogenolysis. Energy Technology, 2019, 7, 1800694.	1.8	10
143	Efficient and selective catalytic pyrolysis of cellulose to monocyclic aromatic hydrocarbons over Zn-containing HZSM-5. Fuel, 2022, 310, 122437.	3.4	10
144	GC/MS Analysis of Organic Compounds in Hot Water-Extractable Fraction from Shenfu Coal. Mining Science and Technology, 2007, 17, 354-357.	0.8	9

#	Article	IF	CITATIONS
145	Organonitrogen compounds identified in degraded wheat straw by oxidation in a sodium hypochlorite aqueous solution. Fuel, 2013, 109, 61-67.	3.4	9
146	Characterization of Oxygenates, Nitrogenates, and Sulfonates in Shengli Lignite Extracts by Orbitrap Mass Spectrometry. Analytical Letters, 2016, 49, 2907-2916.	1.0	9
147	Enhanced Light Aromatic Yield from Lignite Pyrolysis by Remedying the Acid Sites of Different Hierarchical HZSM-5. Energy & Fuels, 2019, 33, 12346-12352.	2.5	8
148	Protection of highly active sites on Cu ₂ O nanocages: an efficient crystalline catalyst for ammonium perchlorate decomposition. CrystEngComm, 2020, 22, 8214-8220.	1.3	8
149	Simultaneous Enhancement of Aromatic Products and Catalytic Lifetime for Catalytic Re-forming of Lignite Pyrolysis Volatiles over a Self-Assembled Hierarchical Core–Shell ZSM-5@Silicalite-1 Zeolite. ACS Sustainable Chemistry and Engineering, 2021, 9, 12960-12969.	3.2	8
150	Chemical transformation of inherent sodium and calcium species during direct liquefaction of two typical lignites rich in alkali and alkaline earth metals. Fuel, 2017, 210, 227-235.	3.4	7
151	Catalytic Upgrading of Lignite Pyrolysis Volatiles over AlF3-Modified HZSM-5 to Light Aromatics: Synergistic Effects of One-Step Dealumination and Realumination. Energy & Fuels, 2021, 35, 12056-12064.	2.5	7
152	Superior capacitive performance of nitrogen-doping three-dimensional hydrangea-like porous carbons derived from oxidized coal tar pitch polymerized p-phenylenediamine. Fuel, 2022, 322, 124068.	3.4	7
153	Synergy Effect in Co-Gasification of Lignite and Char of Pine Sawdust. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2014, 30, 1794-1800.	2.2	6
154	Fabrication strategies of Ni-based catalysts in reforming of biomass tar/tar model compounds. Applications in Energy and Combustion Science, 2022, 9, 100053.	0.9	6
155	Rational synthesis of palladium nanoparticles modified by phosphorous for the conversion of diphenyl ether to KA oil. Applied Catalysis A: General, 2022, 630, 118464.	2.2	6
156	Low-Temperature Reforming of Biomass Tar over Ni/ZSM-5 Catalysts: Unraveling the H ₂ -Rich Gas Production Pathways Using <i>In Situ</i> and <i>Ex Situ</i> Techniques. Industrial & Engineering Chemistry Research, 2022, 61, 5734-5746.	1.8	5
157	Porous Carbons Derived from Lignite Mixed with Zn2+-Doped Lignin for Electric Double-Layer Capacitor. International Journal of Electrochemical Science, 2017, , 8132-8147.	0.5	4
158	Preparation of Porous Carbon Spheres Under Different Activation Conditions from 2-Keto-l-gulonic Acid Mother Liquor for Electric Double-Layer Capacitor. Waste and Biomass Valorization, 2020, 11, 4429-4440.	1.8	4
159	Amorphous/low-crystalline core/shell-type nanoparticles as highly efficient and self-stabilizing catalysts for alkaline hydrogen evolution. Chemical Communications, 2020, 56, 8984-8987.	2.2	4
160	Boosted production of aromatics by catalyzing upgrade pyrolysis vapors from lignite over Sn-Ga/HZSM‑5 catalysts. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105064.	2.6	4
161	Analysis of Soluble Organic Species of Huolinguole Lignite by Atmospheric Pressure Photoionization-Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2017, 45, 1005-1011.	0.9	3
162	Co-alcoholysis of white pine sawdust and Shenmu sub-bituminous coal in sub- and supercritical ethanol. Journal of the Energy Institute, 2018, 91, 1085-1090.	2.7	3

#	Article	IF	CITATIONS
163	Preparation of lignite-based porous carbon/CoNi2S4 composite materials and their capacitance performance. Journal of Fuel Chemistry and Technology, 2021, 49, 20-26.	0.9	3
164	Hydrodeoxygenation of Lignin-Derived Diphenyl Ether to Cyclohexane over a Bifunctional Ru Supported on Synthesis HZSM-5 Catalyst under Mild Conditions. Industrial & Engineering Chemistry Research, 2022, 61, 2937-2946.	1.8	3
165	Ni- and Pd/C-catalyzed Hydrodenitrogenation of Isoquinoline. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2015, 37, 55-60.	1.2	2
166	Low Temperature Gasification of Biomass Using Ni-Loaded Brown Coal. , 2013, , 821-827.		0