Chao Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3134967/publications.pdf

Version: 2024-02-01

218 26,035 77 157
papers citations h-index g-index

244 24 24994
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Multifunctional, Ultraâ€Flyweight, Synergistically Assembled Carbon Aerogels. Advanced Materials, 2013, 25, 2554-2560.	11.1	1,701
2	Ultrathin Graphene Nanofiltration Membrane for Water Purification. Advanced Functional Materials, 2013, 23, 3693-3700.	7.8	1,361
3	Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nature Communications, 2014, 5, 3754.	5.8	1,000
4	Graphene chiral liquid crystals and macroscopic assembled fibres. Nature Communications, 2011, 2, 571.	5.8	936
5	Defect engineering in photocatalytic materials. Nano Energy, 2018, 53, 296-336.	8.2	732
6	<i>In situ</i> Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. Macromolecules, 2010, 43, 6716-6723.	2.2	629
7	Ultrastrong Fibers Assembled from Giant Graphene Oxide Sheets. Advanced Materials, 2013, 25, 188-193.	11.1	613
8	Strong, Conductive, Lightweight, Neat Graphene Aerogel Fibers with Aligned Pores. ACS Nano, 2012, 6, 7103-7113.	7.3	599
9	Aqueous Liquid Crystals of Graphene Oxide. ACS Nano, 2011, 5, 2908-2915.	7.3	567
10	Isolation of Cu Atoms in Pd Lattice: Forming Highly Selective Sites for Photocatalytic Conversion of CO ₂ to CH ₄ . Journal of the American Chemical Society, 2017, 139, 4486-4492.	6.6	455
11	High-Flux Graphene Oxide Nanofiltration Membrane Intercalated by Carbon Nanotubes. ACS Applied Materials & Date: Accordance of the Accorda	4.0	451
12	Coordination chemistry in the design of heterogeneous photocatalysts. Chemical Society Reviews, 2017, 46, 2799-2823.	18.7	449
13	Superstructured Assembly of Nanocarbons: Fullerenes, Nanotubes, and Graphene. Chemical Reviews, 2015, 115, 7046-7117.	23.0	448
14	General Approach to Individually Dispersed, Highly Soluble, and Conductive Graphene Nanosheets Functionalized by Nitrene Chemistry. Chemistry of Materials, 2010, 22, 5054-5064.	3.2	419
15	Ultrahigh Thermal Conductive yet Superflexible Graphene Films. Advanced Materials, 2017, 29, 1700589.	11.1	416
16	Co ₃ O ₄ Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visibleâ€Light Photocatalytic Reduction of CO ₂ . Advanced Materials, 2016, 28, 6485-6490.	11.1	395
17	Heterogeneous Singleâ€Atom Catalyst for Visibleâ€Lightâ€Driven Highâ€Turnover CO ₂ Reduction: The Role of Electron Transfer. Advanced Materials, 2018, 30, e1704624.	11.1	383
18	An iron-based green approach to 1-h production of single-layer graphene oxide. Nature Communications, 2015, 6, 5716.	5.8	377

#	Article	IF	CITATIONS
19	MXene/graphene hybrid fibers for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2017, 5, 22113-22119.	5.2	347
20	Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Science Advances, 2017, 3, eaao7233.	4.7	316
21	Graphene fiber: a new trend in carbon fibers. Materials Today, 2015, 18, 480-492.	8.3	307
22	Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience. ACS Nano, 2017, 11, 6817-6824.	7.3	297
23	Graphene in Macroscopic Order: Liquid Crystals and Wet-Spun Fibers. Accounts of Chemical Research, 2014, 47, 1267-1276.	7.6	295
24	Direct 3D Printing of Ultralight Graphene Oxide Aerogel Microlattices. Advanced Functional Materials, 2018, 28, 1707024.	7.8	284
25	Three-dimensional macro-structures of two-dimensional nanomaterials. Chemical Society Reviews, 2016, 45, 5541-5588.	18.7	280
26	A Defectâ€Free Principle for Advanced Graphene Cathode of Aluminumâ€ion Battery. Advanced Materials, 2017, 29, 1605958.	11.1	280
27	Ultrastiff and Strong Graphene Fibers via Fullâ€Scale Synergetic Defect Engineering. Advanced Materials, 2016, 28, 6449-6456.	11.1	279
28	Enabling Visibleâ€Lightâ€Driven Selective CO ₂ Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H ₂ Evolution. Angewandte Chemie - International Edition, 2018, 57, 16447-16451.	7. 2	262
29	Highly Electrically Conductive Agâ€Doped Graphene Fibers as Stretchable Conductors. Advanced Materials, 2013, 25, 3249-3253.	11.1	257
30	Porous Graphene Microflowers for High-Performance Microwave Absorption. Nano-Micro Letters, 2018, 10, 26.	14.4	255
31	Recent Progress on Electrocatalyst and Photocatalyst Design for Nitrogen Reduction. Small Methods, 2019, 3, 1800388.	4.6	252
32	AlOOH-Reduced Graphene Oxide Nanocomposites: One-Pot Hydrothermal Synthesis and Their Enhanced Electrochemical Activity for Heavy Metal Ions. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4672-4682.	4.0	232
33	A Highly Efficient Metalâ€Free Oxygen Reduction Electrocatalyst Assembled from Carbon Nanotubes and Graphene. Advanced Materials, 2016, 28, 4606-4613.	11.1	216
34	A Review on Graphene Fibers: Expectations, Advances, and Prospects. Advanced Materials, 2020, 32, e1902664.	11.1	206
35	Highly stretchable carbon aerogels. Nature Communications, 2018, 9, 881.	5.8	202
36	Multifunctional non-woven fabrics of interfused graphene fibres. Nature Communications, 2016, 7, 13684.	5.8	193

#	Article	IF	Citations
37	Wet-Spun Continuous Graphene Films. Chemistry of Materials, 2014, 26, 6786-6795.	3.2	186
38	Wood-based straightway channel structure for high performance microwave absorption. Carbon, 2017, 124, 492-498.	5.4	178
39	Transparent and flexible thin films of ZnO-polystyrene nanocomposite for UV-shielding applications. Journal of Materials Chemistry, 2010, 20, 1594.	6.7	176
40	Graphene fiber-based asymmetric micro-supercapacitors. Journal of Materials Chemistry A, 2014, 2, 9736-9743.	5.2	172
41	Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale, 2015, 7, 9399-9404.	2.8	171
42	Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon, 2018, 133, 316-322.	5.4	167
43	A Review on Grapheneâ€Based Electromagnetic Functional Materials: Electromagnetic Wave Shielding and Absorption. Advanced Functional Materials, 2022, 32, .	7.8	165
44	High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon, 2020, 157, 570-577.	5.4	153
45	Flexible high performance wet-spun graphene fiber supercapacitors. RSC Advances, 2013, 3, 23957.	1.7	152
46	Altering Hydrogenation Pathways in Photocatalytic Nitrogen Fixation by Tuning Local Electronic Structure of Oxygen Vacancy with Dopant. Angewandte Chemie - International Edition, 2021, 60, 16085-16092.	7.2	152
47	Wetâ€Spun Superelastic Graphene Aerogel Millispheres with Group Effect. Advanced Materials, 2017, 29, 1701482.	11.1	141
48	Superb Electrically Conductive Graphene Fibers via Doping Strategy. Advanced Materials, 2016, 28, 7941-7947.	11.1	140
49	Highâ€Quality Graphene Microflower Design for Highâ€Performance Li–S and Alâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1700051.	10.2	140
50	Graphene aerogel films with expansion enhancement effect of high-performance electromagnetic interference shielding. Carbon, 2018, 135, 44-51.	5.4	129
51	Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Science Advances, 2020, 6, .	4.7	129
52	Highly Stretchable Graphene Fibers with Ultrafast Electrothermal Response for Lowâ€Voltage Wearable Heaters. Advanced Electronic Materials, 2017, 3, 1600425.	2.6	128
53	Printed aerogels: chemistry, processing, and applications. Chemical Society Reviews, 2021, 50, 3842-3888.	18.7	128
54	Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery. Energy Storage Materials, 2019, 17, 38-45.	9 . 5	124

#	Article	IF	CITATIONS
55	Graphene and Other 2D Colloids: Liquid Crystals and Macroscopic Fibers. Advanced Materials, 2017, 29, 1606794.	11.1	121
56	Lyotropic Liquid Crystal of Polyacrylonitrile-Grafted Graphene Oxide and Its Assembled Continuous Strong Nacre-Mimetic Fibers. Macromolecules, 2013, 46, 6931-6941.	2.2	119
57	Wet-Spinning of Continuous Montmorillonite-Graphene Fibers for Fire-Resistant Lightweight Conductors. ACS Nano, 2015, 9, 5214-5222.	7.3	115
58	Graphene nanosheets decorated with Pd, Pt, Au, and Ag nanoparticles: Synthesis, characterization, and catalysis applications. Science China Chemistry, 2011, 54, 397-404.	4.2	111
59	A Broadband Fluorographene Photodetector. Advanced Materials, 2017, 29, 1700463.	11.1	110
60	Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors. ACS Nano, 2017, 11, 11056-11065.	7.3	110
61	Oxide Film Efficiently Suppresses Dendrite Growth in Aluminum-Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 22628-22634.	4.0	106
62	Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers. Nanoscale, 2013, 5, 4370.	2.8	105
63	Millimeter-sized Mg–Al-LDH nanoflake impregnated magnetic alginate beads (LDH-n-MABs): a novel bio-based sorbent for the removal of fluoride in water. Journal of Materials Chemistry A, 2014, 2, 2119-2128.	5.2	102
64	Water–Salt Oligomers Enable Supersoluble Electrolytes for Highâ€Performance Aqueous Batteries. Advanced Materials, 2021, 33, e2007470.	11.1	102
65	Multifunctional, supramolecular, continuous artificial nacre fibres. Scientific Reports, 2012, 2, 767.	1.6	98
66	Supramolecule-mediated synthesis of MoS ₂ /reduced graphene oxide composites with enhanced electrochemical performance for reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 6884-6893.	5.2	95
67	Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO2 reduction into CH4. Nano Research, 2017, 10, 3396-3406.	5.8	95
68	Crystal phase engineering on photocatalytic materials for energy and environmental applications. Nano Research, 2019, 12, 2031-2054.	5.8	95
69	Click chemistry approach to functionalize two-dimensional macromolecules of graphene oxide nanosheets. Nano-Micro Letters, 2010, 2, 177-183.	14.4	94
70	Recent advances in engineering active sites for photocatalytic CO ₂ reduction. Nanoscale, 2020, 12, 12196-12209.	2.8	93
71	Liquid crystal self-templating approach to ultrastrong and tough biomimic composites. Scientific Reports, 2013, 3, 2374.	1.6	91
72	Hierarchical Porous SWCNT Stringed Carbon Polyhedrons and PSS Threaded MOF Bilayer Membrane for Efficient Solar Vapor Generation. Small, 2019, 15, e1900354.	5.2	89

#	Article	IF	CITATIONS
73	Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nature Communications, 2020, 11, 2645.	5.8	87
74	Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes. Nanoscale, 2015, 7, 4080-4087.	2.8	85
75	High-density and hetero-functional group engineering of segmented hyperbranched polymersvia click chemistry. Polymer Chemistry, 2013, 4, 1774-1787.	1.9	82
76	Water-Soluble and Clickable Segmented Hyperbranched Polymers for Multifunctionalization and Novel Architecture Construction. Macromolecules, 2012, 45, 4966-4977.	2.2	81
77	Macroscopic assembled, ultrastrong and H2SO4-resistant fibres of polymer-grafted graphene oxide. Scientific Reports, 2013, 3, 3164.	1.6	80
78	Threeâ€dimensional printing of grapheneâ€based materials for energy storage and conversion. SusMat, 2021, 1, 304-323.	7.8	78
79	Millisecond Response of Shape Memory Polymer Nanocomposite Aerogel Powered by Stretchable Graphene Framework. ACS Nano, 2019, 13, 5549-5558.	7.3	77
80	Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery. Carbon, 2019, 148, 134-140.	5.4	74
81	Rapid roll-to-roll production of graphene films using intensive Joule heating. Carbon, 2019, 155, 462-468.	5.4	73
82	General Avenue to Multifunctional Aqueous Nanocrystals Stabilized by Hyperbranched Polyglycerol. Chemistry of Materials, 2011, 23, 1461-1470.	3.2	72
83	Chemically doped macroscopic graphene fibers with significantly enhanced thermoelectric properties. Nano Research, 2018, 11, 741-750.	5.8	70
84	Highly Crystalline Graphene Fibers with Superior Strength and Conductivities by Plasticization Spinning. Advanced Functional Materials, 2020, 30, 2006584.	7.8	70
85	Graphene charge-injection photodetectors. Nature Electronics, 2022, 5, 281-288.	13.1	70
86	Boosting Lithium Storage Properties of MOF Derivatives through a Wetâ€Spinning Assembled Fiber Strategy. Chemistry - A European Journal, 2018, 24, 13792-13799.	1.7	68
87	Surface acoustic wave humidity sensors based on uniform and thickness controllable graphene oxide thin films formed by surface tension. Microsystems and Nanoengineering, 2019, 5, 36.	3.4	68
88	Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors. Journal of Materials Chemistry A, 2017, 5, 22489-22494.	5.2	67
89	Artificial Trees for Artificial Photosynthesis: Construction of Dendrite-Structured α-Fe ₂ O ₃ /g-C ₃ N ₄ Z-Scheme System for Efficient CO ₂ Reduction into Solar Fuels. ACS Applied Energy Materials, 2020, 3, 6561-6572.	2.5	67
90	Dry spinning approach to continuous graphene fibers with high toughness. Nanoscale, 2017, 9, 12335-12342.	2.8	66

#	Article	IF	CITATIONS
91	Sequential click synthesis of hyperbranched polymers via the A2 + CB2 approach. Polymer Chemistry, 2011, 2, 2175.	1.9	65
92	Superlight, Mechanically Flexible, Thermally Superinsulating, and Antifrosting Anisotropic Nanocomposite Foam Based on Hierarchical Graphene Oxide Assembly. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44010-44017.	4.0	60
93	Lowâ€Resistance Porous Nanocellular MnSe Electrodes for Highâ€Performance Allâ€Solidâ€State Batteryâ€Supercapacitor Hybrid Devices. Advanced Materials Technologies, 2018, 3, 1800074.	3.0	58
94	Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading. Energy Storage Materials, 2019, 17, 349-357.	9.5	58
95	Efficient Grafting of Hyperbranched Polyglycerol from Hydroxylâ€Functionalized Multiwalled Carbon Nanotubes by Surfaceâ€Initiated Anionic Ringâ€Opening Polymerization. Macromolecular Chemistry and Physics, 2009, 210, 1011-1018.	1.1	57
96	Mass production of graphene nanoscrolls and their application in high rate performance supercapacitors. Nanoscale, 2016, 8, 1413-1420.	2.8	57
97	Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding. Nanoscale, 2017, 9, 18613-18618.	2.8	57
98	Design of atomically dispersed catalytic sites for photocatalytic CO ₂ reduction. Nanoscale, 2019, 11, 11064-11070.	2.8	57
99	Î ² -Cyclodextrin-Capped Polyrotaxanes: One-Pot Facile Synthesis via Click Chemistry and Use as Templates for Platinum Nanowires. Macromolecules, 2010, 43, 2252-2260.	2.2	56
100	Functionalization of carbon nanotubes and other nanocarbons by azide chemistry. Nano-Micro Letters, 2010, 2, 213-226.	14.4	56
101	Reversible fusion and fission of graphene oxide–based fibers. Science, 2021, 372, 614-617.	6.0	56
102	Ultrathick and highly thermally conductive graphene films by self-fusion. Carbon, 2020, 167, 249-255.	5.4	55
103	Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze casting. RSC Advances, 2017, 7, 33600-33605.	1.7	53
104	Solution processible hyperbranched inverse-vulcanized polymers as new cathode materials in Li–S batteries. Polymer Chemistry, 2015, 6, 973-982.	1.9	52
105	Hyperbranched polymers meet colloid nanocrystals: a promising avenue to multifunctional, robust nanohybrids. Colloid and Polymer Science, 2011, 289, 1299-1320.	1.0	51
106	Sheet Collapsing Approach for Rubber-like Graphene Papers. ACS Nano, 2017, 11, 8092-8102.	7.3	50
107	Fast and scalable production of hyperbranched polythioether-ynes by a combination of thiol-halogen click-like coupling and thiol-yne click polymerization. Polymer Chemistry, 2012, 3, 1918-1925.	1.9	49
108	Ultrastiff, Strong, and Highly Thermally Conductive Crystalline Graphitic Films with Mixed Stacking Order. Advanced Materials, 2019, 31, e1903039.	11.1	49

#	Article	IF	Citations
109	Scalable Synthesis of Positively Charged Sequence-Defined Functional Polymers. Journal of the American Chemical Society, 2019, 141, 4541-4546.	6.6	48
110	Systematic characterization of transport and thermoelectric properties of a macroscopic graphene fiber. Nano Research, 2016, 9, 3536-3546.	5.8	47
111	A novel wet-spinning method of manufacturing continuous bio-inspired composites based on graphene oxide and sodium alginate. Nano Research, 2016, 9, 735-744.	5.8	47
112	Superconducting Continuous Graphene Fibers <i>via</i> Calcium Intercalation. ACS Nano, 2017, 11, 4301-4306.	7.3	47
113	Piezoresistive effect of superelastic graphene aerogel spheres. Carbon, 2020, 158, 418-425.	5.4	47
114	Facile synthesis and self-assembly of multihetero-arm hyperbranched polymer brushes. Soft Matter, 2009, 5, 4788.	1.2	45
115	Sequentially Hetero-functional, Topological Polymers by Step-growth Thiol-yne Approach. Scientific Reports, 2015, 4, 4387.	1.6	44
116	Breathable and Flexible Polymer Membranes with Mechanoresponsive Electric Resistance. Advanced Functional Materials, 2020, 30, 1907555.	7.8	44
117	Fast bulk click polymerization approach to linear and hyperbranched alternating multiblock copolymers. Polymer Chemistry, 2013, 4, 542-549.	1.9	43
118	Experimental Guidance to Graphene Macroscopic Wet-Spun Fibers, Continuous Papers, and Ultralightweight Aerogels. Chemistry of Materials, 2017, 29, 319-330.	3.2	43
119	Monolithic Neat Graphene Oxide Aerogel for Efficient Catalysis of S → O Acetyl Migration. ACS Catalysis, 2015, 5, 3387-3392.	5.5	40
120	Handedness-controlled and solvent-driven actuators with twisted fibers. Materials Horizons, 2019, 6, 1207-1214.	6.4	40
121	A Stacked Plasmonic Metamaterial with Strong Localized Electric Field Enables Highly Efficient Broadband Lightâ€Driven CO ₂ Hydrogenation. Advanced Materials, 2022, 34, e2202367.	11.1	40
122	2Dâ€Topologyâ€Seeded Graphitization for Highly Thermally Conductive Carbon Fibers. Advanced Materials, 2022, 34, e2201867.	11.1	40
123	Amphibious polymer-functionalized CdTe quantum dots: Synthesis, thermo-responsive self-assembly, and photoluminescent properties. Journal of Materials Chemistry, 2009, 19, 5655.	6.7	38
124	Ion Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers. ACS Nano, 2017, 11, 9663-9670.	7.3	38
125	Highly conductive graphene film with high-temperature stability for electromagnetic interference shielding. Carbon, 2021, 179, 202-208.	5.4	38
126	Capacitive charge storage enables an ultrahigh cathode capacity in aluminum-graphene battery. Journal of Energy Chemistry, 2020, 45, 40-44.	7.1	37

#	Article	IF	Citations
127	Dendritic molecular brushes: synthesis via sequential RAFT polymerization and cage effect for fluorophores. Polymer Chemistry, 2013, 4, 4450.	1.9	36
128	A Mini Review on Nanocarbon-Based 1D Macroscopic Fibers: Assembly Strategies and Mechanical Properties. Nano-Micro Letters, 2017, 9, 51.	14.4	36
129	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. Chinese Chemical Letters, 2023, 34, 107592.	4.8	35
130	Advanced Graphene Materials for Sodium/Potassium/Aluminum-Ion Batteries., 2021, 3, 1221-1237.		34
131	Fabrication of Nitrogen-Doped Graphene Decorated with Organophosphor and Lanthanum toward High-Performance ABS Nanocomposites. ACS Applied Nano Materials, 2018, 1, 3204-3213.	2.4	33
132	Environmentally stable macroscopic graphene films with specific electrical conductivity exceeding metals. Carbon, 2020, 156, 205-211.	5.4	33
133	The Origin of the Sheet Size Predicament in Graphene Macroscopic Papers. ACS Nano, 2021, 15, 4824-4832.	7.3	33
134	Selfâ€Adaptive Allâ€Inâ€One Delivery Chip for Rapid Skin Nerves Regeneration by Endogenous Mesenchymal Stem Cells. Advanced Functional Materials, 2020, 30, 2001751.	7.8	32
135	Bidirectional mid-infrared communications between two identical macroscopic graphene fibres. Nature Communications, 2020, 11, 6368.	5.8	32
136	Artificial Bicontinuous Laminate Synergistically Reinforces and Toughens Dilute Graphene Composites. ACS Nano, 2018, 12, 11236-11243.	7.3	31
137	Exquisite design of porous carbon microtubule-scaffolding hierarchical In ₂ O ₃ -Znln ₂ Heterostructures toward efficient photocatalytic conversion of CO ₂ into CO. Nanoscale, 2020, 12, 14676-14681.	2.8	31
138	Electrospinning of Neat Graphene Nanofibers. Advanced Fiber Materials, 2022, 4, 268-279.	7.9	31
139	High rate capability supercapacitors assembled from wet-spun graphene films with a CaCO ₃ template. Journal of Materials Chemistry A, 2015, 3, 1890-1895.	5.2	30
140	Total Basin Discharge From GRACE and Water Balance Method for the Yarlung Tsangpo River Basin, Southwestern China. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7617-7632.	1.2	30
141	Multifunctional Macroassembled Graphene Nanofilms with High Crystallinity. Advanced Materials, 2021, 33, e2104195.	11.1	30
142	Redissolution of Flower-Shaped Graphene Oxide Powder with High Density. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8000-8007.	4.0	29
143	Artificial colloidal liquid metacrystals by shearing microlithography. Nature Communications, 2019, 10, 4111.	5.8	29
144	Wet-spun poly(ionic liquid)-graphene hybrid fibers for high performance all-solid-state flexible supercapacitors. Journal of Energy Chemistry, 2019, 34, 104-110.	7.1	29

#	Article	IF	CITATIONS
145	Conformational Phase Map of Two-Dimensional Macromolecular Graphene Oxide in Solution. Matter, 2020, 3, 230-245.	5.0	29
146	A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly. Chinese Journal of Polymer Science (English Edition), 2021, 39, 267-308.	2.0	29
147	Enabling Visibleâ€Lightâ€Driven Selective CO ₂ Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H ₂ Evolution. Angewandte Chemie, 2018, 130, 16685-16689.	1.6	28
148	Interlayer crosslinking to conquer the stress relaxation of graphene laminated materials. Materials Horizons, 2018, 5, 1112-1119.	6.4	28
149	Polyacrylonitrile-derived thermally conductive graphite film via graphene template effect. Carbon, 2021, 180, 197-203.	5.4	28
150	Simultaneous photoluminescence import and mechanical enhancement of polymer films using silica-hybridized quantum dots. Journal of Materials Chemistry, 2010, 20, 5675.	6.7	27
151	The electrophilic effect of thiol groups on thiol–yne thermal click polymerization for hyperbranched polythioether. Polymer Chemistry, 2015, 6, 3747-3753.	1.9	27
152	Highly conductive porous graphene/sulfur composite ribbon electrodes for flexible lithium–sulfur batteries. Nanoscale, 2018, 10, 21132-21141.	2.8	27
153	Continuous fabrication of the graphene-confined polypyrrole film for cycling stable supercapacitors. Journal of Materials Chemistry A, 2017, 5, 8255-8260.	5.2	26
154	Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums. Advanced Materials, 2022, 34, e2103740.	11.1	25
155	Click Chemistry Approach to Rhodamine Bâ€Capped Polyrotaxanes and their Unique Fluorescence Properties. Macromolecular Chemistry and Physics, 2009, 210, 1697-1708.	1.1	24
156	Ultralight graphene micro-popcorns for multifunctional composite applications. Carbon, 2018, 139, 545-555.	5.4	24
157	Macroscopic assembled graphene nanofilms based room temperature ultrafast midâ€infrared photodetectors. InformaÄnÄ-Materiály, 2022, 4, .	8.5	24
158	Potential evapotranspiration changes in Lancang River Basin and Yarlung Zangbo River Basin, southwest China. Hydrological Sciences Journal, 2018, 63, 1653-1668.	1.2	21
159	Multifunctional Bicontinuous Composite Foams with Ultralow Percolation Thresholds. ACS Applied Materials & Samp; Interfaces, 2018, 10, 20806-20815.	4.0	21
160	Liquid crystalline 3D printing for superstrong graphene microlattices with high density. Carbon, 2020, 159, 166-174.	5.4	21
161	A Highâ€Performance Direct Methanol Fuel Cell Technology Enabled by Mediating Highâ€Concentration Methanol through a Graphene Aerogel. Small Methods, 2018, 2, 1800138.	4.6	20
162	Impacts of climate change on characteristics of dailyâ€scale rainfall events based on nine selected GCMs under four CMIP5 RCP scenarios in Qu River basin, east China. International Journal of Climatology, 2020, 40, 887-907.	1.5	20

#	Article	IF	Citations
163	High-Speed Blow Spinning of Neat Graphene Fibrous Materials. Nano Letters, 2021, 21, 5116-5125.	4.5	20
164	Conformation Engineering of Two-Dimensional Macromolecules: A Case Study with Graphene Oxide. Accounts of Materials Research, 2020, 1, 175-187.	5.9	19
165	Digital Programming Graphene Oxide Liquid Crystalline Hybrid Hydrogel by Shearing Microlithography. ACS Nano, 2020, 14, 2336-2344.	7.3	19
166	Highly electrically conductive graphene papers via catalytic graphitization. Nano Research, 2022, 15, 4902-4908.	5.8	18
167	A density gradient of basic fibroblast growth factor guides directional migration of vascular smooth muscle cells. Colloids and Surfaces B: Biointerfaces, 2014, 117, 290-295.	2.5	17
168	Wrinkle-stabilized metal-graphene hybrid fibers with zero temperature coefficient of resistance. Nanoscale, 2017, 9, 12178-12188.	2.8	17
169	Functionalization of wet-spun graphene films using aminophenol molecules for high performance supercapacitors. Materials Chemistry Frontiers, 2018, 2, 2313-2319.	3.2	17
170	Nonsphere Drop Impact Assembly of Graphene Oxide Liquid Crystals. ACS Nano, 2019, 13, 8382-8391.	7.3	17
171	Hydroplastic Micromolding of 2D Sheets. Advanced Materials, 2021, 33, e2008116.	11.1	17
172	A graphitized expanded graphite cathode for aluminum-ion battery with excellent rate capability. Journal of Energy Chemistry, 2022, 66, 38-44.	7.1	17
173	Miktoarms hyperbranched polymer brushes: One-step fast synthesis by parallel click chemistry and hierarchical self-assembly. Science China Chemistry, 2010, 53, 2461-2471.	4.2	15
174	Novel triethylamine catalyzed S â†' O acetyl migration reaction to generate candidate thiols for construction of topological and functional sulfur-containing polymers. RSC Advances, 2015, 5, 5674-5679.	1.7	15
175	High porosity microspheres with functional groups synthesized by thiol–yne click suspension polymerization. Polymer Chemistry, 2016, 7, 7400-7407.	1.9	15
176	Anisotropic Thermal Transport in Spray-Coated Single-Phase Two-Dimensional Materials: Synthetic Clay Versus Graphene Oxide. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18785-18791.	4.0	15
177	Solarâ€Driven Artificial Carbon Cycle. Chinese Journal of Chemistry, 0, , .	2.6	15
178	Heavy Water Enables High-Voltage Aqueous Electrochemistry via the Deuterium Isotope Effect. Journal of Physical Chemistry Letters, 2020, 11, 303-310.	2.1	14
179	Conformational Scaling Relations of Two-Dimensional Macromolecular Graphene Oxide in Solution. Macromolecules, 2020, 53, 10421-10430.	2.2	14
180	Bioinspiration toward efficient photosynthetic systems: From biohybrids to biomimetics. Chem Catalysis, 2021, 1, 1367-1377.	2.9	14

#	Article	IF	Citations
181	A review on elastic graphene aerogels: Design, preparation, and applications. Journal of Polymer Science, 2022, 60, 2239-2261.	2.0	14
182	Twist-spinning assembly of robust ultralight graphene fibers with hierarchical structure and multi-functions. Carbon, 2020, 158, 157-162.	5.4	13
183	Stress relaxation behaviors of graphene fibers. Carbon, 2021, 182, 384-392.	5.4	13
184	Operando surface science methodology reveals surface effect in charge storage electrodes. National Science Review, 2021, 8, nwaa289.	4.6	13
185	A Minireview on the Role of Cocatalysts in Semiconductor-Based Photocatalytic CH ₄ Conversion. Energy & Samp; Fuels, 2022, 36, 11428-11442.	2.5	13
186	Directional migration of vascular smooth muscle cells guided by synergetic surface gradient and chemical pattern of poly(ethylene glycol) brushes. Journal of Bioactive and Compatible Polymers, 2013, 28, 605-620.	0.8	12
187	Dynamic dispersion stability of graphene oxide with metal ions. Chinese Chemical Letters, 2020, 31, 1625-1629.	4.8	12
188	A polyimide-pyrolyzed carbon waste approach for the scalable and controlled electrochemical preparation of size-tunable graphene. Nanoscale, 2020, 12, 11971-11978.	2.8	12
189	Timeâ€Resolved Xâ€Ray Absorption Spectroscopy: Visualizing the Time Evolution of Photophysics and Photochemistry in Photocatalytic Solar Energy Conversion. Solar Rrl, 2021, 5, 2000468.	3.1	11
190	Aerogels: Multifunctional, Ultraâ€Flyweight, Synergistically Assembled Carbon Aerogels (Adv. Mater.) Tj ETQq0 C	0	verlock 10 Ti
191	Porous Bilayer Electrodeâ€Guided Gas Diffusion for Enhanced CO ₂ Electrochemical Reduction. Advanced Energy and Sustainability Research, 2021, 2, 2100083.	2.8	10
192	Biosynthetic CdS-Thiobacillus thioparus hybrid for solar-driven carbon dioxide fixation. Nano Research, 2023, 16, 4531-4538.	5.8	10
193	Investigating the uncertainty and transferability of parameters in SWAT model under climate change. Hydrological Sciences Journal, 2016, , 1-17.	1.2	9
194	Wet-spinning assembly of nitrogen-doped graphene film for stable graphene-polyaniline supercapacitor electrodes with high mass loading. Science China Materials, 2020, 63, 1889-1897.	3.5	9
195	Carbon Nanotubes Loaded on Graphene Microfolds as Efficient Bifunctional Electrocatalysts for the Oxygen Reduction and Oxygen Evolution Reactions. ChemCatChem, 2017, 9, 4520-4528.	1.8	9
196	Tuning the local electronic structure of a single-site Ni catalyst by co-doping a 3D graphene framework with B/N atoms toward enhanced CO ₂ electroreduction. Nanoscale, 2022, 14, 833-841.	2.8	9
197	Ultralight Heat-Insulating, Electrically Conductive Carbon Fibrous Sponges for Wearable Mechanosensing Devices with Advanced Warming Function. ACS Applied Materials & Enterfaces, 2022, 14, 19918-19927.	4.0	9
198	Group interval-controlled polymers: an example of epoxy functional polymers via step-growth thiolâ€"yne polymerization. Polymer Chemistry, 2016, 7, 6202-6210.	1.9	8

#	Article	IF	CITATIONS
199	Altering Hydrogenation Pathways in Photocatalytic Nitrogen Fixation by Tuning Local Electronic Structure of Oxygen Vacancy with Dopant. Angewandte Chemie, 2021, 133, 16221-16228.	1.6	8
200	Click chemistry approach to functionalize two-dimensional macromolecules of graphene oxide nanosheets. Nano-Micro Letters, 2010, 2, 177.	14.4	8
201	Precise Thermoplastic Processing of Graphene Oxide Layered Solid by Polymer Intercalation. Nano-Micro Letters, 2022, 14, 12.	14.4	8
202	Reversible photoswitching self-assembly of azobenzene-functionalized hyperbranched polyglycerol induced by host-guest chemistry. Science China Chemistry, 2012, 55, 604-611.	4.2	7
203	Highly oxidized graphene with enhanced fluorescence and its direct fluorescence visualization. Science China Chemistry, 2014, 57, 605-614.	4.2	7
204	Robust adhesion between various surfaces enabled by lamellar stacking of graphene oxide nanosheets. Carbon, 2021, 171, 417-425.	5. 4	7
205	Graphene-templated approach to ultrathin silica nanosheets. Science Bulletin, 2012, 57, 3026-3029.	1.7	6
206	An improved sensitivity AlN microcantilever humidity sensor using interdigital transducers actuated very high resonant mode and graphene oxide sensing layer. , 2018 , , .		5
207	Plasticization stretching strategy towards high strength nacre-like graphene-based composites. Composites Communications, 2021, 27, 100815.	3.3	5
208	Graphene: Ultrastrong Fibers Assembled from Giant Graphene Oxide Sheets (Adv. Mater. 2/2013). Advanced Materials, 2013, 25, 187-187.	11.1	4
209	Liquid Crystalline Microdroplets of Graphene Oxide via Microfluidics. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1657-1664.	2.0	4
210	Highly Sensitive AIN Surface Acoustic Wave Humidity Sensor Based on Uniform Graphene Oxide Thin Film Formed by Surface Tension. , $2018, \ldots$		3
211	Monitoring atmospheric 85Kr by atom counting. Journal of Environmental Radioactivity, 2021, 233, 106604.	0.9	3
212	Functionalization of carbon nanotubes and other nanocarbons by azide chemistry. Nano-Micro Letters, 2010, 2, 213.	14.4	3
213	Progress and perspective in mechanically robust carbon aerogels. Journal of Applied Physics, 2022, 131,	1.1	3
214	Timeâ€Dependent Surface Oxidation of Pd Nanocubes and its Role in Controlling Catalytic Performance. ChemNanoMat, 2019, 5, 878-882.	1.5	2
215	Sunlightâ€Driven Highly Selective Catalytic Oxidation of 5â€Hydroxymethylfurfural Towards Tunable Products. Angewandte Chemie, 0, , .	1.6	2
216	Self-assembled macroscopic structures of graphene oxide fibers through a wet-fusing strategy. Carbon, 2022, 196, 940-949.	5.4	2

#	Article	IF	CITATIONS
217	Broadband and Fast Response Thermophone Using Graphene Nanofilm. , 2019, , .		1
218	Graphene photonic crystal fiber with large modulation depth. Science China Chemistry, 2020, 63, 5-6.	4.2	0