Alex James

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3134571/publications.pdf
Version: 2024-02-01

$1 \quad$ Scaling laws of marine predator search behaviour. Nature, 2008, 451, 1098-1102. 27.8 852
2 Disentangling nestedness from models of ecological complexity. Nature, 2012, 487, 227-230. 27.8 195
Of mast and mean: differentialâ€temperature cue makes mast seeding insensitive to climate change. 6.4 195
3 Ecology Letters, 2013, 16, 90-98.
Assessing LÃ®vy walks as models of animal foraging. Journal of the Royal Society Interface, 2011, 8, 3.4 139
$4 \begin{aligned} & \text { Assessing LA } \\ & 1233-1247 .\end{aligned}$
5 Optimal foraging: LÃ@vy pattern or process?. Journal of the Royal Society Interface, 2008, 5, 1077-1086. 3.4 107
6 Sizeâ€spectra dynamics from stochastic predation and growth of individuals. Ecology, 2009, 90, 802-811. 3.2 98
7 Optimizing the encounter rate in biological interactions: Ballistic versus LÃ@vy versus Brownian 2.1 67
strategies. Physical Review E, 2008, 78, 051128.An event-based model of superspreading in epidemics. Proceedings of the Royal Society B: Biological
Worldwide border interceptions provide a window into humanâ€mediated global insect movement. 3.8 53
$9 \quad$ Ecological Applications, 2021, 31, e02412.10 Modelling, 2003, 160, 77-90.2.542
The relationship between plankton blooms, the hatching of fish larvae, and recruitment. Ecological
Quantifying the effects of individual and environmental variability in fish recruitment. FisheriesOceanography, 2005, 14, 156-160.
1.7 37
Spatial moment dynamics for collective cell movement incorporating a neighbour-dependent
3.4 35
directional bias. Journal of the Royal Society Interface, 2015, 12, 20150228. 12
Gender and societies: a grassroots approach to women in science. Royal Society Open Science, 2019, 6, $13 \quad$ Gender a 2.43314 Constructing Random Matrices to Represent Real Ecosystems. American Naturalist, 2015, 185, 680-692.2.131
15 Collective Cell Behaviour with Neighbour-Dependent Proliferation, Death and Directional Bias.
Bulletin of Mathematical Biology, 2016, 78, 2277-2301. 1.9 30
Efficient or Inaccurate? Analytical and Numerical Modelling of Random Search Strategies. Bulletin ofSuccessful contact tracing systems for COVID-19 rely on effective quarantine and isolation. PLoSONE, 2021, 16, e0252499.2.525
19 Optimal foraging in patchy turbulent environments. Marine Ecology - Progress Series, 2003, 256, 99-110.

$20 \quad$| Spatial structure arising from neighbour-dependent bias in collective cell movement. Peer), 2016, 4, |
| :--- |
| el689. |

21 | Early intervention is the key to success in COVID-19 control. Royal Society Open Science, 2021, 8, |
| :--- |
| 210488. |

22 Nathematical modelling to inform New Zealandâ $€^{\mathrm{TM}}$ S COVID-19 response. Journal of the Royal Society of
Managing the risk of a COVID-19 outbreak from border arrivals. Journal of the Royal Society Interface,
$2021,18,20210063$.

A phenomenological model of muscle fatigue and the power-endurance relationship. Journal of
Applied Physiology, 2012, 113, 1643-1651.

25 James et al. reply. Nature, 2013, 500, E2-E3.
$27.8 \quad 16$

26 Considering unseen arrivals in predictions of establishment risk based on border biosecurity
interceptions. Ecological Applications, 2020, 30, e02194.

Climate-Based Models for Pulsed Resources Improve Predictability of Consumer Population Dynamics:
Climate-Based Models for Pulsed Resources Improve Predictabiitty of Consumer Pop
Outbreaks of House Mice in Forest Ecosystems. PLoS ONE, 2015, 10, e0119139.

A structured model for COVID-19 spread: modelling age and healthcare inequities. Mathematical Medicine and Biology, 2021, 38, 299-313.

> 29 A nonlinear model of age and size-structured populations with applications to cell cycles. ANZIAM
> Journal, 2007, 49, 151-169.
0.2

13

30 Assessing the efficacy of population-level models of mast seeding. Theoretical Ecology, 2015, 8, 121-132.
1.0

13
â€œWe definitely wouldn't be able to solve it all by ourselves, but togetherấ $\mid \hat{\jmath} €!$ group synergy in tertiary
students' problem-solving practices. Research in Mathematics Education, 2014, 16, 306-323.

32 Model-free estimation of COVID-19 transmission dynamics from a complete outbreak. PLoS ONE, 2021, 16, e0238800.
2.5

12

Longâ€term biodiversity trajectories for pestâ€managed ecological restorations: eradication vs.
suppression. Ecological Monographs, 2021, 91, e01439.
5.4

11

A dynamical model of honeydew droplet production by sooty-beech scale insects (Ultracoelostoma) Tj ETQq0 00 rgBT /Overlock 10 Tf 5

From lessons to lectures: NCEA mathematics results and first-year mathematics performance.
International Journal of Mathematical Education in Science and Technology, 2008, 39, 1037-1050.
1.4

9

Application of a spatial meta-population model with stochastic parameters to the management of the
37 A mathematical model of the defence mechanism of a bombardier beetle. Journal of the Royal Society
Interface, 2013, 10, 20120801.

Potential reduction in transmission of COVID-19 by digital contact tracing systems: a modelling study. 38 Mathematical Medicine and Biology, 2022, 39, 156-168.
1.28

39 Multi-channel monolith reactors as dynamical systems. Combustion and Flame, 2003, 134, 193-205. 5.2

40	Does computer-aided formative assessment improve learning outcomes?. International Journal of	1.4	7

41 Using family network data in child protection services. PLoS ONE, 2019, 14, e0224554.	2.5	7

42 MÄori and Pacific people in New Zealand have a higher risk of hospitalisation for COVID-19. New Zealand
Medical Journal, 2021, 134, 28-43.
$0.5 \quad 7$

43 Meeting the needs of our best and brightest: curriculum acceleration in tertiary mathematics.
International Journal of Mathematical Education in Science and Technology, 2011, 42, 299-312. Competition and diffusive invasion in a noisy environment. Mathematical Medicine and Biology, 2011,
28, 153-163.
1.26

45	Kia kaua te reo e rite ki te moa, ka ngaro: do not let the language suffer the same fate as the moa. Journal of the Royal Society Interface, 2020, 17, 20190526.	3.4	6
46	Classification of behaviour in a steady plug-flow model of catalytic combustion. Chemical Engineering Science, 2001, 56, 4649-4658.	3.8	5
47	Modelling predation as a capped rate stochastic process, with applications to fish recruitment. Journal of the Royal Society Interface, 2005, 2, 477-487.	3.4	5
48	The necessity of tailored control of irrupting pest populations driven by pulsed resources. Theoretical Ecology, 2020, 13, 261-275.	1.0	5
49	The role of variance in capped-rate stochastic growth models with external mortality. Journal of Theoretical Biology, 2007, 244, 228-238.	1.7	4
50	How Herbivore Browsing Strategy Affects Whole-Plant Photosynthetic Capacity. Bulletin of Mathematical Biology, 2017, 79, 772-787.	1.9	4
51	Emergence of balanced harvesting in an agent-based model of an open-access small-scale fishery. Mathematical Biosciences, 2019, 316, 108245.	1.9	4
52	Optimal control of irrupting pest populations in a climate-driven ecosystem. PeerJ, 2018, 6, e6146.	2.0	4
53	Stability of multiple steady states of catalytic combustion. Combustion and Flame, 2002, 130, 137-146.	5.2	3
54	Evolutionarily Stable Strategies for Fecundity and Swimming Speed of Fish. Bulletin of Mathematical Biology, 2016, 78, 280-292.	1.9	3

$56 \quad$ Group by subject or by ability? Tertiary mathematics for engineering students. International Journal of Mathematical Education in Science and Technology, 2011, 42, 857-865.
57 Individual heterogeneity affects the outcome of small mammal pest eradication. Theoretical Ecology,

59	Spatial utilization predicts animal social contact networks are not scale-free. Royal Society Open Science, 2017, 4, 171209.	2.4	1
60	Predicting water levels in ephemeral wetlands under climate change scenarios. Theoretical Ecology, 2019, 12, 427-435.	1.0	1
61	Comment: weekly COVID-19 testing with household quarantine and contact tracing is feasible and would probably end the epidemic. Royal Society Open Science, 2021, 8, 201546.	2.4	1
62	Modelling the dynamic response of oxygen uptake to exercise. Discrete and Continuous Dynamical Systems - Series B, 2009, 12, 361-370.	0.9	1
63	An episodic model of honeydew production in scale insects. Austral Ecology, 2012, 37, 308-312.	1.5	0
64	Limiting Effect of Self-Shading on the Height of Tradescantia fluminensis Mats. Bulletin of Mathematical Biology, 2019, 81, 3918-3932.	1.9	0
65	Longâ€Jerm Biodiversity Benefits from Invasive Mammalian Pest Control in Ecological Restorations. Bulletin of the Ecological Society of America, 2021, 102, e01843.	0.2	0

