Manuel Houmard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3134491/publications.pdf

Version: 2024-02-01

393982 476904 1,052 52 19 29 citations g-index h-index papers 53 53 53 1308 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Surface modification of magnesium with a novel composite coating for application in bone tissue engineering. Surface and Coatings Technology, 2022, 433, 128078.	2.2	3
2	Post-synthetic modification of aluminum trimesate and copper trimesate with TiO2 nanoparticles for photocatalytic applications. Journal of Materials Science, 2022, 57, 4481-4503.	1.7	12
3	Structural and photocatalytic properties of sol–gel-derived TiO2 samples prepared by conventional and hydrothermal methods using a low amount of water. Journal of Sol-Gel Science and Technology, 2022, 103, 97-107.	1.1	2
4	Preparation of titania-reduced graphene oxide composite coatings with electro- and photosensitive properties. Applied Surface Science, 2021, 538, 148029.	3.1	7
5	Influence of the Fe-based catalyst incorporation method on the carbon nanotube structure of hybrid composites synthesized by CCVD method using methane and without hydrogen reduction step. Ceramics International, 2021, 47, 6928-6939.	2.3	0
6	Deliquescent behavior of calcium phosphate materials synthesized by sol–gel technique. Journal of Sol-Gel Science and Technology, 2021, 97, 404-413.	1.1	3
7	Polyvinyl alcohol/ <scp>multiâ€walled</scp> carbon nanotubes nanocomposites with ordered macroporous structures prepared by <scp>iceâ€templating</scp> . Journal of Applied Polymer Science, 2021, 138, 49837.	1.3	4
8	Heat treatment as a key factor for enhancing the photodegradation performance of hydrothermally-treated sol–gel TiO2–SiO2 nanocomposites. Journal of Sol-Gel Science and Technology, 2021, 99, 188.	1.1	1
9	Gamma sterilization of collagen/hydroxyapatite composites: Validation and radiation effects. Applied Radiation and Isotopes, 2021, 174, 109758.	0.7	18
10	Facile sol–gel synthesis of silica sorbents for the removal of organic pollutants from aqueous media. Journal of Materials Research and Technology, 2021, 15, 4580-4594.	2.6	9
11	Fabrication and characterization of dicalcium phosphate coatings deposited on magnesium substrates by a chemical conversion route. Surface and Coatings Technology, 2020, 386, 125505.	2.2	13
12	Fabrication of porous samples from a high-temperature Cu–Al–Ni–Mn–Nb shape memory alloy by freeze-drying and partial sintering. Journal of Materials Research and Technology, 2020, 9, 3676-3685.	2.6	13
13	Development of functional TiO2 coatings deposited on cementitious materials. Construction and Building Materials, 2020, 250, 118732.	3.2	13
14	Clarifying the roles of hydrothermal treatment and silica addition to synthesize TiO2-based nanocomposites with high photocatalytic performance. Journal of Sol-Gel Science and Technology, 2020, 95, 119-135.	1.1	7
15	TiO2 Sol-gel Coating as a Transducer Substrate for Impedimetric Immunosensors. Chemical and Biochemical Engineering Quarterly, 2020, 33, 437-447.	0.5	1
16	Recent Advances and New Discussions on Superhydrophobic Coatings and Admixtures Applied to Cementitious Materials. Open Construction and Building Technology Journal, 2020, 14, 400-409.	0.3	2
17	Influence of the synthesis parameters on the mesoporous structure and adsorption behavior of silica xerogels fabricated by sol–gel technique. Journal of Sol-Gel Science and Technology, 2019, 92, 681-694.	1.1	16
18	Simple preparation of 58S bioactive glass/polycaprolactone composite scaffolds by freeze-drying under ambient conditions. Materials Letters, 2019, 256, 126647.	1.3	3

#	Article	IF	CITATIONS
19	Erosive Wear Study of the AISI 201LN Stainless Steel: A Comparison with the AISI 304 and AISI 410 Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1663-1671.	1.1	8
20	Influence of the nanostructure of silica supports on the growth and morphology of MWCNTs synthesized by CCVD method. Ceramics International, 2019, 45, 13297-13307.	2.3	7
21	Freeze-cast composite scaffolds prepared from sol-gel derived 58S bioactive glass and polycaprolactone. Ceramics International, 2019, 45, 9891-9900.	2.3	16
22	Drilling of nodular cast iron with a novel SiO2 coating deposited by sol-gel process in HSS drill. International Journal of Advanced Manufacturing Technology, 2019, 105, 4837-4849.	1.5	8
23	Effect of the carbon loading on the structural and photocatalytic properties of reduced graphene oxide-TiO2 nanocomposites prepared by hydrothermal synthesis. Journal of Materials Research and Technology, 2019, 8, 6262-6274.	2.6	26
24	Characterization of Ceramics Coatings Processed by Sol-Gel for Cutting Tools. Coatings, 2019, 9, 755.	1.2	11
25	Solvent effect on the structure and photocatalytic behavior of TiO ₂ -RGO nanocomposites. Journal of Materials Research, 2019, 34, 3918-3930.	1.2	19
26	Preparation of Al2O3 and MgAl2O4-based samples with tailored macroporous structures. Ceramics International, 2018, 44, 580-587.	2.3	6
27	Evaluation of the pozzolanicity of nanostructured sol-gel silica and silica fume by electrical conductivity measurement. Construction and Building Materials, 2018, 160, 252-257.	3.2	20
28	Easy functionalization process applied to develop superâ€hydrophobic and oleophobic properties on ASTM 1200 aluminum surface. Surface and Interface Analysis, 2018, 50, 1370-1383.	0.8	7
29	Macroporous alumina structures tailored by freeze-casting using naphthalene–camphor as freezing vehicle. Ceramics International, 2018, 44, 16010-16016.	2.3	15
30	Drilling of aluminium/PE sandwich material with a novel TiO2-coated HSS drill deposited by sol–gel process. International Journal of Advanced Manufacturing Technology, 2017, 92, 1567-1577.	1.5	10
31	Simple process for preparing mesoporous sol-gel silica adsorbents with high water adsorption capacities. Microporous and Mesoporous Materials, 2017, 253, 177-182.	2.2	34
32	Enhancement of NiTi superelastic endodontic instruments by TiO2 coating. Materials Science and Engineering C, 2016, 68, 675-680.	3.8	22
33	Development of a flexible nanocomposite TiO2 film as a protective coating for bioapplications of superelastic NiTi alloys. Applied Surface Science, 2016, 375, 42-49.	3.1	34
34	Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 2015, 41, 10467-10475.	2.3	23
35	The influence of Fe2O3 doping on the pore structure and mechanical strength of TiO2-containing alumina obtained by freeze-casting. Ceramics International, 2015, 41, 14049-14056.	2.3	16
36	Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 2014, 96, 183-195.	1.9	48

#	Article	IF	Citations
37	Simple sol–gel process to obtain silica-coated anatase particles with enhanced TiO2-SiO2 interfacial area. Journal of Colloid and Interface Science, 2014, 433, 211-217.	5.0	34
38	Correlation between sol–gel reactivity and wettability of silica films deposited on stainless steel. Applied Surface Science, 2014, 289, 218-223.	3.1	32
39	Spectroscopic study of natural quartz samples. Radiation Physics and Chemistry, 2013, 90, 79-86.	1.4	13
40	Structural investigation of cobalt-doped silica derived from sol–gel synthesis. Journal of Non-Crystalline Solids, 2013, 378, 1-6.	1.5	6
41	Surface charges of oxides and wettability: Application to TiO2–SiO2 composite films. Applied Surface Science, 2013, 287, 37-45.	3.1	26
42	On the structural, mechanical, and biodegradation properties of HA/ \hat{l}^2 -TCP robocast scaffolds. , 2013, 101, 1233-1242.		89
43	A two-scale Weibull approach to the failure of porous ceramic structures made by robocasting: Possibilities and limits. Journal of the European Ceramic Society, 2013, 33, 679-688.	2.8	29
44	Synthesis and structural characterization of potato starch sponges. Journal of Non-Crystalline Solids, 2012, 358, 2663-2666.	1.5	6
45	Sol–gel method to fabricate CaP scaffolds by robocasting for tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 921-930.	1.7	33
46	Enhanced cleanability of super-hydrophilic TiO2–SiO2 composite surfaces prepared via a sol–gel route. Surface Science, 2011, 605, 456-462.	0.8	40
47	Hydrophobic functionalization of cotton-based textile fabrics through a non-fluorinated sol–gel route. Journal of Sol-Gel Science and Technology, 2010, 55, 243-254.	1.1	23
48	Water and oil wettability of hybrid organic–inorganic titanate–silicate thin films deposited via a sol–gel route. Surface Science, 2009, 603, 2698-2707.	0.8	24
49	Enhanced persistence of natural super-hydrophilicity in TiO2–SiO2 composite thin films deposited via a sol–gel route. Surface Science, 2008, 602, 3364-3374.	0.8	63
50	Natural and persistent superhydrophilicity of SiO2/TiO2 and TiO2/SiO2 bi-layer films. Thin Solid Films, 2008, 516, 957-966.	0.8	68
51	Surface physico-chemistry study of an austenitic stainless steel: Effect of simple cold rolling treatment on surface contamination. Corrosion Science, 2007, 49, 2602-2611.	3.0	8
52	Morphology and natural wettability properties of sol–gel derived TiO2–SiO2 composite thin films. Applied Surface Science, 2007, 254, 1405-1414.	3.1	101