Patrick Van Dijck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3134163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interesting antifungal drug targets in the central metabolism of Candida albicans. Trends in Pharmacological Sciences, 2022, 43, 69-79.	8.7	15
2	Two trehalase isoforms, produced from a single transcript, regulate drought stress tolerance in Arabidopsis thaliana. Plant Molecular Biology, 2022, 108, 531-547.	3.9	6
3	Therapeutic implications of <i>C. albicans-S. aureus</i> mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence, 2021, 12, 835-851.	4.4	37
4	Fluorescent toys â€~n' tools lighting the way in fungal research. FEMS Microbiology Reviews, 2021, 45, .	8.6	2
5	Microbial Interkingdom Biofilms and the Quest for Novel Therapeutic Strategies. Microorganisms, 2021, 9, 412.	3.6	21
6	Photochromic Fluorophores Enable Imaging of Lowly Expressed Proteins in the Autofluorescent Fungus Candida albicans. MSphere, 2021, 6, .	2.9	1
7	Genome-Wide Analysis of Experimentally Evolved Candida auris Reveals Multiple Novel Mechanisms of Multidrug Resistance. MBio, 2021, 12, .	4.1	75
8	Investigating the Antifungal Mechanism of Action of Polygodial by Phenotypic Screening in Saccharomyces cerevisiae. International Journal of Molecular Sciences, 2021, 22, 5756.	4.1	2
9	Probe-based intravital microscopy: filling the gap between in vivo imaging and tissue sample microscopy in basic research and clinical applications. JPhys Photonics, 2021, 3, 032003.	4.6	1
10	The Role of Fatty Acid Metabolites in Vaginal Health and Disease: Application to Candidiasis. Frontiers in Microbiology, 2021, 12, 705779.	3.5	19
11	<i>N</i> -Acetyl- <scp>l</scp> -cysteine-Loaded Nanosystems as a Promising Therapeutic Approach Toward the Eradication of <i>Pseudomonas aeruginosa</i> Biofilms. ACS Applied Materials & Interfaces, 2021, 13, 42329-42343.	8.0	8
12	Diagnostic Allele-Specific PCR for the Identification of Candida auris Clades. Journal of Fungi (Basel,) Tj ETQqO 0 (OrgBT ∕Ov	erlgck 10 Tf
13	The involvement of the <i>Candida glabrata</i> trehalase enzymes in stress resistance and gut colonization. Virulence, 2021, 12, 329-345.	4.4	9
14	A Complex Microbial Interplay Underlies Recurrent Vulvovaginal Candidiasis Pathobiology. MSystems, 2021, 6, e0106621.	3.8	5
15	Essential Oils Improve the Survival of Gnotobiotic Brine Shrimp (Artemia franciscana) Challenged With Vibrio campbellii. Frontiers in Immunology, 2021, 12, 693932.	4.8	10
16	Genome-wide analysis of experimentally evolved Candida auris reveals multiple novel mechanisms of multidrug-resistance. Access Microbiology, 2021, 3, .	0.5	0
17	Biofilm inhibiting properties of compounds from the leaves of Warburgia ugandensis Sprague subsp ugandensis against Candida and staphylococcal biofilms. Journal of Ethnopharmacology, 2020, 248, 112352.	4.1	20

18Amphotericin B and Other Polyenesâ€"Discovery, Clinical Use, Mode of Action and Drug Resistance.
Journal of Fungi (Basel, Switzerland), 2020, 6, 321.3.5126

#	Article	IF	CITATIONS
19	Molecular Elucidation of Riboflavin Production and Regulation in Candida albicans, toward a Novel Antifungal Drug Target. MSphere, 2020, 5, .	2.9	15
20	Inhibitory Activity of Essential Oils against Vibrio campbellii and Vibrio parahaemolyticus. Microorganisms, 2020, 8, 1946.	3.6	16
21	Adapting to survive: How Candida overcomes host-imposed constraints during human colonization. PLoS Pathogens, 2020, 16, e1008478.	4.7	56
22	Innovative Strategies Toward the Disassembly of the EPS Matrix in Bacterial Biofilms. Frontiers in Microbiology, 2020, 11, 952.	3.5	112
23	Let's shine a light on fungal infections: A noninvasive imaging toolbox. PLoS Pathogens, 2020, 16, e1008257.	4.7	10
24	Sugar Phosphorylation Controls Carbon Source Utilization and Virulence of Candida albicans. Frontiers in Microbiology, 2020, 11, 1274.	3.5	11
25	Striking essential oil: tapping into a largely unexplored source for drug discovery. Scientific Reports, 2020, 10, 2867.	3.3	17
26	Three-Dimensional Visualization of APEX2-Tagged Erg11 in Saccharomyces cerevisiae Using Focused Ion Beam Scanning Electron Microscopy. MSphere, 2020, 5, .	2.9	7
27	Transcriptional responses of Candida glabrata biofilm cells to fluconazole are modulated by the carbon source. Npj Biofilms and Microbiomes, 2020, 6, 4.	6.4	16
28	Presenting a codon-optimized palette of fluorescent proteins for use in Candida albicans. Scientific Reports, 2020, 10, 6158.	3.3	7
29	Adhesion of Staphylococcus aureus to Candida albicans During Co-Infection Promotes Bacterial Dissemination Through the Host Immune Response. Frontiers in Cellular and Infection Microbiology, 2020, 10, 624839.	3.9	25
30	Bioluminescence Imaging to Study Mature Biofilm Formation by Candida spp. and Antifungal Activity In Vitro and In Vivo. Methods in Molecular Biology, 2020, 2081, 127-143.	0.9	6
31	Protein-Protein Interactions in Candida albicans. Frontiers in Microbiology, 2019, 10, 1792.	3.5	12
32	Impact of nanosystems in <i>Staphylococcus aureus</i> biofilms treatment. FEMS Microbiology Reviews, 2019, 43, 622-641.	8.6	64
33	Candida albicans and Staphylococcus Species: A Threatening Twosome. Frontiers in Microbiology, 2019, 10, 2162.	3.5	112
34	Occurrence, antifungal susceptibility, and virulence factors of opportunistic yeasts isolated from Brazilian beaches. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e180566.	1.6	23
35	Mitogen-Activated Protein Kinase Cross-Talk Interaction Modulates the Production of Melanins in Aspergillus fumigatus. MBio, 2019, 10,	4.1	56
36	Sugar Sensing and Signaling in Candida albicans and Candida glabrata. Frontiers in Microbiology, 2019, 10, 99.	3.5	63

3

#	Article	IF	CITATIONS
37	Inhibition of Vesicular Transport Influences Fungal Susceptibility to Fluconazole. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	9
38	Can Saccharomyces cerevisiae keep up as a model system in fungal azole susceptibility research?. Drug Resistance Updates, 2019, 42, 22-34.	14.4	21
39	An antibiofilm coating of 5â€arylâ€2â€aminoimidazole covalently attached to a titanium surface. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1908-1919.	3.4	11
40	Monitoring of Fluconazole and Caspofungin Activity against <i>In Vivo</i> Candida glabrata Biofilms by Bioluminescence Imaging. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	22
41	Candidalysin Crucially Contributes to Nlrp3 Inflammasome Activation by Candida albicans Hyphae. MBio, 2019, 10, .	4.1	70
42	Functional Characterization of Class I Trehalose Biosynthesis Genes in Physcomitrella patens. Frontiers in Plant Science, 2019, 10, 1694.	3.6	8
43	Biosynthesis and Degradation of Trehalose and Its Potential to Control Plant Growth, Development, and (A)biotic Stress Tolerance. , 2019, , 175-199.		3
44	Essential oils and their components are a class of antifungals with potent vapour-phase-mediated anti-Candida activity. Scientific Reports, 2018, 8, 3958.	3.3	25
45	Methionine is required for cAMPâ€PKAâ€mediated morphogenesis and virulence of <i>Candida albicans</i> . Molecular Microbiology, 2018, 108, 258-275.	2.5	28
46	Bioluminescence imaging increases in vivo screening efficiency for antifungal activity against device-associated Candida albicans biofilms. International Journal of Antimicrobial Agents, 2018, 52, 42-51.	2.5	18
47	Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. Nature Microbiology, 2018, 3, 402-414.	13.3	72
48	Antifungal Activity of Oleylphosphocholine on <i>In Vitro</i> and <i>In Vivo Candida albicans</i> Biofilms. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	12
49	Fungal persister cells: The basis for recalcitrant infections?. PLoS Pathogens, 2018, 14, e1007301.	4.7	85
50	A High-Throughput <i>Candida albicans</i> Two-Hybrid System. MSphere, 2018, 3, .	2.9	13
51	Introducing fluorescence resonance energy transfer-based biosensors for the analysis of cAMP-PKA signalling in the fungal pathogen Candida glabrata. Cellular Microbiology, 2018, 20, e12863.	2.1	14
52	Fire blight host-pathogen interaction: proteome profiles of Erwinia amylovora infecting apple rootstocks. Scientific Reports, 2018, 8, 11689.	3.3	10
53	Anidulafungin increases the antibacterial activity of tigecycline in polymicrobial Candida albicans/Staphylococcus aureus biofilms on intraperitoneally implanted foreign bodies. Journal of Antimicrobial Chemotherapy, 2018, 73, 2806-2814.	3.0	23
54	A Framework for Understanding the Evasion of Host Immunity by Candida Biofilms. Frontiers in Immunology, 2018, 9, 538.	4.8	11

#	Article	IF	CITATIONS
55	Adhesins in Candida glabrata. Journal of Fungi (Basel, Switzerland), 2018, 4, 60.	3.5	75
56	Candida glabrata's Genome Plasticity Confers a Unique Pattern of Expressed Cell Wall Proteins. Journal of Fungi (Basel, Switzerland), 2018, 4, 67.	3.5	31
57	Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 2018, 5, 300-326.	3.2	81
58	Generating genomic platforms to study Candida albicans pathogenesis. Nucleic Acids Research, 2018, 46, 6935-6949.	14.5	30
59	Antifungal Activity and Synergism with Azoles of Polish Propolis. Pathogens, 2018, 7, 56.	2.8	43
60	A Cinderella story: how the vacuolar proteases Pep4 and Prb1 do more than cleaning up the cell's mass degradation processes. Microbial Cell, 2018, 5, 438-443.	3.2	12
61	Fungal–Bacterial Interactions: In Health and Disease. , 2017, , 115-143.		5
62	Nutrient Sensing at the Plasma Membrane of Fungal Cells. Microbiology Spectrum, 2017, 5, .	3.0	24
63	Lipid Signaling via Pkh1/2 Regulates Fungal CO ₂ Sensing through the Kinase Sch9. MBio, 2017, 8, .	4.1	17
64	Comparison of genome engineering using the CRISPR-Cas9 system in C. glabrata wild-type and lig4 strains. Fungal Genetics and Biology, 2017, 107, 44-50.	2.1	12
65	Modulation of Staphylococcus aureus Response to Antimicrobials by the Candida albicans Quorum Sensing Molecule Farnesol. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	73
66	A Bimolecular Fluorescence Complementation Tool for Identification of Protein-Protein Interactions in <i>Candida albicans</i> . G3: Genes, Genomes, Genetics, 2017, 7, 3509-3520.	1.8	11
67	Mitochondrial Cochaperone Mge1 Is Involved in Regulating Susceptibility to Fluconazole in Saccharomyces cerevisiae and Candida Species. MBio, 2017, 8, .	4.1	31
68	Assay and recommendations for the detection of vapourâ€phaseâ€mediated antimicrobial activities. Flavour and Fragrance Journal, 2017, 32, 347-353.	2.6	10
69	Trehalose metabolism: A sweet spot for <i>Burkholderia pseudomallei</i> virulence. Virulence, 2017, 8, 5-7.	4.4	18
70	Nutrient Sensing at the Plasma Membrane of Fungal Cells. , 2017, , 417-439.		4
71	A Linear 19-Mer Plant Defensin-Derived Peptide Acts Synergistically with Caspofungin against Candida albicans Biofilms. Frontiers in Microbiology, 2017, 8, 2051.	3.5	30
72	The Antifungal Plant Defensin HsAFP1 Is a Phosphatidic Acid-Interacting Peptide Inducing Membrane Permeabilization. Frontiers in Microbiology, 2017, 8, 2295.	3.5	36

#	Article	IF	CITATIONS
73	Antibacterial activity of a new broadâ€spectrum antibiotic covalently bound to titanium surfaces. Journal of Orthopaedic Research, 2016, 34, 2191-2198.	2.3	29
74	Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix. MBio, 2016, 7, .	4.1	202
75	Modulation of the Substitution Pattern of 5-Aryl-2-Aminoimidazoles Allows Fine-Tuning of Their Antibiofilm Activity Spectrum and Toxicity. Antimicrobial Agents and Chemotherapy, 2016, 60, 6483-6497.	3.2	18
76	The antifungal caspofungin increases fluoroquinolone activity against Staphylococcus aureus biofilms by inhibiting N-acetylglucosamine transferase. Nature Communications, 2016, 7, 13286.	12.8	41
77	Characterization of the Candida albicans Amino Acid Permease Family: Gap2 Is the Only General Amino Acid Permease and Gap4 Is an <i>S</i> -Adenosylmethionine (SAM) Transporter Required for SAM-Induced Morphogenesis. MSphere, 2016, 1, .	2.9	23
78	Sticky Matrix: Adhesion Mechanism of the Staphylococcal Polysaccharide Intercellular Adhesin. ACS Nano, 2016, 10, 3443-3452.	14.6	80
79	Covalent immobilization of antimicrobial agents on titanium prevents <i>Staphylococcus aureus</i> and <i>Candida albicans</i> colonization and biofilm formation. Journal of Antimicrobial Chemotherapy, 2016, 71, 936-945.	3.0	68
80	Candida albicans Biofilm Development on Medically-relevant Foreign Bodies in a Mouse Subcutaneous Model Followed by Bioluminescence Imaging. Journal of Visualized Experiments, 2015, , 52239.	0.3	24
81	Characterising atypical Candida albicans clinical isolates from six third-level hospitals in BogotÃ _i , Colombia. BMC Microbiology, 2015, 15, 199.	3.3	17
82	Force Nanoscopy of Hydrophobic Interactions in the Fungal Pathogen <i>Candida glabrata</i> . ACS Nano, 2015, 9, 1648-1655.	14.6	48
83	Deletion of the DNA Ligase IV Gene in Candida glabrata Significantly Increases Gene-Targeting Efficiency. Eukaryotic Cell, 2015, 14, 783-791.	3.4	11
84	New echinocandin susceptibility patterns for nosocomial Candida albicans in BogotÃ _i , Colombia, in ten tertiary care centres: an observational study. BMC Infectious Diseases, 2015, 15, 108.	2.9	5
85	Trehalose-6-phosphate synthase 1 is not the only active TPS in <i>Arabidopsis thaliana</i> . Biochemical Journal, 2015, 466, 283-290.	3.7	77
86	Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism. Plant Physiology, 2015, 169, 379-390.	4.8	62
87	Clinical Implications of Oral Candidiasis: Host Tissue Damage and Disseminated Bacterial Disease. Infection and Immunity, 2015, 83, 604-613.	2.2	73
88	In vivo Candida glabrata biofilm development on foreign bodies in a rat subcutaneous model. Journal of Antimicrobial Chemotherapy, 2015, 70, 846-856.	3.0	46
89	Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network. Nature Communications, 2014, 5, 4868.	12.8	63
90	Ascorbic Acid Inhibition of Candida albicans Hsp90-Mediated Morphogenesis Occurs via the Transcriptional Regulator Upc2. Eukaryotic Cell, 2014, 13, 1278-1289.	3.4	17

6

#	Article	IF	CITATIONS
91	Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. Frontiers in Plant Science, 2014, 5, 147.	3.6	145
92	Towards nonâ€invasive monitoring of pathogen–host interactions during <i> <scp>C</scp> andida albicans </i> biofilm formation using <i>in vivo</i> bioluminescence. Cellular Microbiology, 2014, 16, 115-130.	2.1	50
93	Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends in Microbiology, 2014, 22, 326-333.	7.7	404
94	Trehalose metabolism in plants. Plant Journal, 2014, 79, 544-567.	5.7	464
95	Microbial biofilms - the coming of age of a research field. Pathogens and Disease, 2014, 70, 203-204.	2.0	5
96	Microbial cell surface proteins and secreted metabolites involved in multispecies biofilms. Pathogens and Disease, 2014, 70, 219-230.	2.0	32
97	Functional screening of a cDNA library from the desiccation-tolerant plant Selaginella lepidophylla in yeast mutants identifies trehalose biosynthesis genes of plant and microbial origin. Journal of Plant Research, 2014, 127, 803-813.	2.4	19
98	Oral Administration of the Broad-Spectrum Antibiofilm Compound Toremifene Inhibits Candida albicans and Staphylococcus aureus Biofilm Formation <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2014, 58, 7606-7610.	3.2	22
99	The desiccation tolerant secrets of Selaginella lepidophylla: What we have learned so far?. Plant Physiology and Biochemistry, 2014, 80, 285-290.	5.8	35
100	Bioluminescence Imaging of Fungal Biofilm Development in Live Animals. Methods in Molecular Biology, 2014, 1098, 153-167.	0.9	24
101	Metabolic engineering of Kluyveromyces lactis for L-ascorbic acid (vitamin C) biosynthesis. Microbial Cell Factories, 2013, 12, 59.	4.0	30
102	Quantifying the Forces Driving Cell–Cell Adhesion in a Fungal Pathogen. Langmuir, 2013, 29, 13473-13480.	3.5	49
103	Recent insights into Candida albicans biofilm resistance mechanisms. Current Genetics, 2013, 59, 251-264.	1.7	230
104	Single-cell force spectroscopy of the medically important Staphylococcus epidermidis–Candida albicans interaction. Nanoscale, 2013, 5, 10894.	5.6	82
105	Relevance of Trehalose in Pathogenicity: Some General Rules, Yet Many Exceptions. PLoS Pathogens, 2013, 9, e1003447.	4.7	74
106	Mammalian ribosomal and chaperone protein RPS3A counteracts α-synuclein aggregation and toxicity in a yeast model system. Biochemical Journal, 2013, 455, 295-306.	3.7	15
107	Overexpression of the Trehalase Gene <i>AtTRE1</i> Leads to Increased Drought Stress Tolerance in Arabidopsis and Is Involved in Abscisic Acid-Induced Stomatal Closure Â. Plant Physiology, 2013, 161, 1158-1171.	4.8	117
108	Activities of Systemically Administered Echinocandins against In Vivo Mature Candida albicans Biofilms Developed in a Rat Subcutaneous Model. Antimicrobial Agents and Chemotherapy, 2013, 57, 2365-2368.	3.2	40

#	Article	IF	CITATIONS
109	Redundant and non-redundant roles of the trehalose-6-phosphate phosphatases in leaf growth, root hair specification and energy-responses in Arabidopsis. Plant Signaling and Behavior, 2013, 8, e23209.	2.4	20
110	Oriented Polar Snakes for Phase Contrast Cell Images Segmentation. Lecture Notes in Computer Science, 2013, , 25-32.	1.3	2
111	Potent Synergistic Effect of Doxycycline with Fluconazole against Candida albicans Is Mediated by Interference with Iron Homeostasis. Antimicrobial Agents and Chemotherapy, 2012, 56, 3785-3796.	3.2	113
112	Loss-of-function mutations in HINT1 cause axonal neuropathy with neuromyotonia. Nature Genetics, 2012, 44, 1080-1083.	21.4	102
113	Tight Control of Trehalose Content Is Required for Efficient Heat-induced Cell Elongation in Candida albicans. Journal of Biological Chemistry, 2012, 287, 36873-36882.	3.4	24
114	The Heat-Induced Molecular Disaggregase Hsp104 of Candida albicans Plays a Role in Biofilm Formation and Pathogenicity in a Worm Infection Model. Eukaryotic Cell, 2012, 11, 1012-1020.	3.4	28
115	Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis Â. Plant Physiology, 2012, 160, 884-896.	4.8	120
116	The Nonsteroidal Antiinflammatory Drug Diclofenac Potentiates the In Vivo Activity of Caspofungin Against Candida albicans Biofilms. Journal of Infectious Diseases, 2012, 206, 1790-1797.	4.0	60
117	<i>Candida</i> Biofilms and the Host: Models and New Concepts for Eradication. International Journal of Microbiology, 2012, 2012, 1-16.	2.3	85
118	Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nature Genetics, 2012, 44, 445-449.	21.4	207
119	Diversity in Genetic <i>In Vivo</i> Methods for Protein-Protein Interaction Studies: from the Yeast Two-Hybrid System to the Mammalian Split-Luciferase System. Microbiology and Molecular Biology Reviews, 2012, 76, 331-382.	6.6	172
120	Single-Molecule Imaging and Functional Analysis of Als Adhesins and Mannans during Candida albicans Morphogenesis. ACS Nano, 2012, 6, 10950-10964.	14.6	84
121	Transcription factor Efg1 contributes to the tolerance of Candida albicans biofilms against antifungal agents in vitro and in vivo. Journal of Medical Microbiology, 2012, 61, 813-819.	1.8	18
122	Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. Journal of Medical Microbiology, 2011, 60, 1261-1269.	1.8	103
123	The Candida albicans GAP Gene Family Encodes Permeases Involved in General and Specific Amino Acid Uptake and Sensing. Eukaryotic Cell, 2011, 10, 1219-1229.	3.4	34
124	Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiology, 2010, 10, 114.	3.3	127
125	Candida albicans biofilm formation in a new in vivo rat model. Microbiology (United Kingdom), 2010, 156, 909-919.	1.8	97
126	The Cytophaga hutchinsonii ChTPSP: First Characterized Bifunctional TPS–TPP Protein as Putative Ancestor of All Eukaryotic Trehalose Biosynthesis Proteins. Molecular Biology and Evolution, 2010, 27, 359-369.	8.9	53

#	Article	IF	CITATIONS
127	A CUG codon adapted two-hybrid system for the pathogenic fungus Candida albicans. Nucleic Acids Research, 2010, 38, e184-e184.	14.5	31
128	In Vivo Efficacy of Anidulafungin against Mature Candida albicans Biofilms in a Novel Rat Model of Catheter-Associated Candidiasis. Antimicrobial Agents and Chemotherapy, 2010, 54, 4474-4475.	3.2	66
129	A Single Active Trehalose-6-P Synthase (TPS) and a Family of Putative Regulatory TPS-Like Proteins in Arabidopsis. Molecular Plant, 2010, 3, 406-419.	8.3	134
130	Candida albicans Pde1p and Gpa2p comprise a regulatory module mediating agonist-induced cAMP signalling and environmental adaptation. Fungal Genetics and Biology, 2010, 47, 742-752.	2.1	20
131	Dominant mutations in the tyrosyl-tRNA synthetase gene recapitulate in <i>Drosophila</i> features of human Charcot–Marie–Tooth neuropathy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11782-11787.	7.1	96
132	Extensive expression regulation and lack of heterologous enzymatic activity of the Class II trehalose metabolism proteins from <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2009, 32, 1015-1032.	5.7	131
133	Nutrient sensing G protein-coupled receptors: interesting targets for antifungals?. Medical Mycology, 2009, 47, 671-680.	0.7	19
134	Combined Inactivation of the <i>Candida albicans GPR1</i> and <i>TPS2</i> Genes Results in Avirulence in a Mouse Model for Systemic Infection. Infection and Immunity, 2008, 76, 1686-1694.	2.2	34
135	Identification of Hexose Transporter-Like Sensor <i>HXS1</i> and Functional Hexose Transporter <i>HXT1</i> in the Methylotrophic Yeast <i>Hansenula polymorpha</i> . Eukaryotic Cell, 2008, 7, 735-746.	3.4	39
136	Environmental Sensing and Signal Transduction Pathways Regulating Morphopathogenic Determinants of <i>Candida albicans</i> . Microbiology and Molecular Biology Reviews, 2007, 71, 348-376.	6.6	457
137	Isolation and Characterization of Brewer's Yeast Variants with Improved Fermentation Performance under High-Gravity Conditions. Applied and Environmental Microbiology, 2007, 73, 815-824.	3.1	102
138	Trehalose-6-P synthase AtTPS1 high molecular weight complexes in yeast and Arabidopsis. Plant Science, 2007, 173, 426-437.	3.6	27
139	ABI4 mediates the effects of exogenous trehalose on Arabidopsis growth and starch breakdown. Plant Molecular Biology, 2007, 63, 195-206.	3.9	93
140	Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Molecular Biology, 2007, 64, 371-386.	3.9	189
141	A bifunctional TPS–TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta, 2007, 226, 1411-1421.	3.2	183
142	Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. Journal of Biotechnology, 2006, 121, 309-317.	3.8	26
143	Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nature Genetics, 2006, 38, 197-202.	21.4	323
144	Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica, 2005, 146, 165-176.	1.2	58

#	Article	IF	CITATIONS
145	The G Protein-coupled Receptor Gpr1 and the Gα Protein Gpa2 Act through the cAMP-Protein Kinase A Pathway to Induce Morphogenesis inCandida albicans. Molecular Biology of the Cell, 2005, 16, 1971-1986.	2.1	188
146	New Selection Marker for Plant Transformation. , 2004, 267, 385-396.		5
147	The Arabidopsis Trehalose-6-P Synthase AtTPS1 Gene Is a Regulator of Glucose, Abscisic Acid, and Stress Signaling. Plant Physiology, 2004, 136, 3649-3659.	4.8	333
148	Glucose and sucrose: hazardous fast-food for industrial yeast?. Trends in Biotechnology, 2004, 22, 531-537.	9.3	132
149	The high general stress resistance of the <i>Saccharomyces cerevisiae fil1</i> adenylate cyclase mutant (Cyr1 ^{Lys1682}) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4â€regulated genes. Yeast, 2004, 21, 75-86.	1.7	32
150	Glucose and Sucrose Act as Agonist and Mannose as Antagonist Ligands of the G Protein-Coupled Receptor Gpr1 in the Yeast Saccharomyces cerevisiae. Molecular Cell, 2004, 16, 293-299.	9.7	190
151	Uncoupling of the glucose growth defect and the deregulation of glycolysis in Saccharomyces cerevisiae tps1 mutants expressing trehalose-6-phosphate-insensitive hexokinase from Schizosaccharomyces pombe. Biochimica Et Biophysica Acta - Bioenergetics, 2003, 1606, 83-93.	1.0	40
152	Determinants of Freeze Tolerance in Microorganisms, Physiological Importance, and Biotechnological Applications. Advances in Applied Microbiology, 2003, 53, 129-176.	2.4	76
153	Disruption of the Candida albicans TPS2 Gene Encoding Trehalose-6-Phosphate Phosphatase Decreases Infectivity without Affecting Hypha Formation. Infection and Immunity, 2002, 70, 1772-1782.	2.2	104
154	Isolation and Characterization of a Freeze-Tolerant Diploid Derivative of an Industrial Baker's Yeast Strain and Its Use in Frozen Doughs. Applied and Environmental Microbiology, 2002, 68, 4780-4787.	3.1	67
155	Aquaporin Expression Correlates with Freeze Tolerance in Baker's Yeast, and Overexpression Improves Freeze Tolerance in Industrial Strains. Applied and Environmental Microbiology, 2002, 68, 5981-5989.	3.1	138
156	Truncation of Arabidopsis thaliana and Selaginella lepidophylla trehalose-6-phosphate synthase unlocks high catalytic activity and supports high trehalose levels on expression in yeast. Biochemical Journal, 2002, 366, 63-71.	3.7	84
157	An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends in Plant Science, 2001, 6, 510-513.	8.8	204
158	Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase. Biochemical Journal, 2001, 353, 157-162.	3.7	34
159	Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans The GenBank accession number for the sequence reported in this paper is AF043230 Microbiology (United Kingdom), 2001, 147, 1851-1862.	1.8	187
160	Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochemical Journal, 2000, 350, 261.	3.7	19
161	Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase. Biochemical Journal, 2000, 353, 157.	3.7	10
162	Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochemical Journal, 2000, 350, 261-268.	3.7	54

#	Article	IF	CITATIONS
163	Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme and Microbial Technology, 2000, 26, 819-825.	3.2	122
164	Characterization of a new set of mutants deficient in fermentation-induced loss of stress resistance for use in frozen dough applications. International Journal of Food Microbiology, 2000, 55, 187-192.	4.7	32
165	A specific mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K1876M, eliminates glucose- and acidification-induced cAMP signalling and delays glucose-induced loss of stress resistance. International Journal of Food Microbiology, 2000, 55, 103-107.	4.7	10
166	The <i>PDE1</i> -encoded Low-Affinity Phosphodiesterase in the Yeast <i>Saccharomyces cerevisiae</i> Has a Specific Function in Controlling Agonist-induced cAMP Signaling. Molecular Biology of the Cell, 1999, 10, 91-104.	2.1	183
167	A Selaginella lepidophyllaTrehalose-6-Phosphate Synthase Complements Growth and Stress-Tolerance Defects in a Yeasttps1Mutant1. Plant Physiology, 1999, 119, 1473-1482.	4.8	164
168	A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Molecular Microbiology, 1999, 32, 1002-1012.	2.5	339
169	A mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K1876M, specifically affects glucose- and acidification-induced cAMP signalling and not the basal cAMP level. Molecular Microbiology, 1999, 33, 363-376.	2.5	41
170	Deletion ofSFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeastSaccharomyces cerevisiae, causes G2 arrest. Yeast, 1999, 15, 1097-1109.	1.7	35
171	Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 1993, 8, 927-943.	2.5	130