## Zhi-Qian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3134096/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Prediction of Microstructure Evolution of Cold Sprayed Coatings Using a Dislocation Density Based<br>Constitutive Model. Lecture Notes in Mechanical Engineering, 2022, , 125-128.                                 | 0.4 | 0         |
| 2  | Impact velocity-dependent bonding mechanisms in metal cold spray. Surface and Coatings Technology, 2022, 433, 128085.                                                                                              | 4.8 | 13        |
| 3  | Cold spray deposition of Inconel 718 in comparison with atmospheric plasma spray deposition. Applied Surface Science, 2021, 535, 147704.                                                                           | 6.1 | 29        |
| 4  | Conservational integrals of the fourth-order phase field model for brittle fracture via Noether theorem. Engineering Fracture Mechanics, 2021, 245, 107590.                                                        | 4.3 | 6         |
| 5  | Impact induced metallurgical and mechanical interlocking in metals. Computational Materials Science, 2021, 192, 110363.                                                                                            | 3.0 | 11        |
| 6  | Fourthâ€order phase field model with spectral decomposition for simulating fracture in hyperelastic<br>material. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 2372-2388.                | 3.4 | 7         |
| 7  | An experimentally validated dislocation density based computational framework for predicting microstructural evolution in cold spray process. International Journal of Solids and Structures, 2021, 225, 111065.   | 2.7 | 12        |
| 8  | Phase field simulation for fracture behavior of hyperelastic material at large deformation based on edge-based smoothed finite element method. Engineering Fracture Mechanics, 2020, 238, 107233.                  | 4.3 | 27        |
| 9  | Multiscale Modeling to Predict the Hydrophobicity of an Experimentally Designed Coating. Journal of<br>Physical Chemistry C, 2020, 124, 9866-9875.                                                                 | 3.1 | 2         |
| 10 | An Automated Deposition Procedure for Cold Spray Additive Manufacturing Process Modeling Based on Finite Element Simulation. Lecture Notes in Mechanical Engineering, 2020, , 133-143.                             | 0.4 | 1         |
| 11 | A modified immersed smoothed FEM with local field reconstruction for fluid–structure interactions. Engineering Analysis With Boundary Elements, 2019, 107, 218-232.                                                | 3.7 | 12        |
| 12 | Instabilities in dielectric elastomers: buckling, wrinkling, and crumpling. Soft Matter, 2019, 15, 7137-7144.                                                                                                      | 2.7 | 23        |
| 13 | Coupling of SPH with smoothed point interpolation method for violent fluid-structure interaction problems. Engineering Analysis With Boundary Elements, 2019, 103, 1-10.                                           | 3.7 | 35        |
| 14 | Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory<br>Polymer System. ACS Applied Materials & Interfaces, 2019, 11, 10328-10336.                                       | 8.0 | 126       |
| 15 | An Effective Multiscale Methodology for the Analysis of Marine Flexible Risers. Journal of Marine<br>Science and Engineering, 2019, 7, 340.                                                                        | 2.6 | 5         |
| 16 | Coupling immersed method with node-based partly smoothed point interpolation method (NPS-PIM)<br>for large-displacement fluid-structure interaction problems. Ocean Engineering, 2018, 157, 180-201.               | 4.3 | 17        |
| 17 | A cellâ€based smoothed finite element method with semiâ€implicit <scp>CBS</scp> procedures for<br>incompressible laminar viscous flows. International Journal for Numerical Methods in Fluids, 2018,<br>86, 20-45. | 1.6 | 45        |
| 18 | A quasiâ€implicit characteristic–based penalty finiteâ€element method for incompressible laminar viscous<br>flows. International Journal for Numerical Methods in Engineering, 2018, 114, 147-171.                 | 2.8 | 11        |

ZHI-QIAN ZHANG

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Locking-Free Face-Based S-FEM via Averaging Nodal Pressure using 4-Nodes Tetrahedrons for 3D<br>Explicit Dynamics and Quasi-statics. International Journal of Computational Methods, 2018, 15, 1850043.               | 1.3 | 10        |
| 20 | A Finite Element Method for Dielectric Elastomers Affected by Viscoelasticity and Current Leakage.<br>International Journal of Applied Mechanics, 2018, 10, 1850102.                                                    | 2.2 | 6         |
| 21 | A soft active origami robot. Extreme Mechanics Letters, 2018, 24, 30-37.                                                                                                                                                | 4.1 | 38        |
| 22 | A sharp-interface immersed smoothed finite element method for interactions between incompressible flows and large deformation solids. Computer Methods in Applied Mechanics and Engineering, 2018, 340, 24-53.          | 6.6 | 35        |
| 23 | Wearable Mechanotransduced Tactile Sensor for Haptic Perception. Advanced Materials<br>Technologies, 2017, 2, 1700006.                                                                                                  | 5.8 | 45        |
| 24 | An immersed smoothed point interpolation method (ISâ€PIM) for fluidâ€structure interaction problems.<br>International Journal for Numerical Methods in Fluids, 2017, 85, 213-234.                                       | 1.6 | 17        |
| 25 | Dynamic pattern of wrinkles in a dielectric elastomer. Soft Matter, 2017, 13, 2942-2951.                                                                                                                                | 2.7 | 31        |
| 26 | Smoothed finite element methods (S-FEMs) with polynomial pressure projection (P3) for incompressible solids. Engineering Analysis With Boundary Elements, 2017, 84, 253-269.                                            | 3.7 | 19        |
| 27 | A 3D multi-field element for simulating the electromechanical coupling behavior of dielectric elastomers. Acta Mechanica Solida Sinica, 2017, 30, 374-389.                                                              | 1.9 | 13        |
| 28 | Multiscale Modelling Approaches for Flexible Risers: Procedures, Capabilities and Demonstrations. ,<br>2016, , .                                                                                                        |     | 0         |
| 29 | Numerical and Experimental Study on the Residual Stresses in the Nitrided Steel. Journal of Materials<br>Engineering and Performance, 2016, 25, 4036-4045.                                                              | 2.5 | 1         |
| 30 | An edge-based/node-based selective smoothed finite element method using tetrahedrons for cardiovascular tissues. Engineering Analysis With Boundary Elements, 2015, 59, 62-77.                                          | 3.7 | 46        |
| 31 | A smoothed finite element method for analysis of anisotropic large deformation of passive rabbit<br>ventricles in diastole. International Journal for Numerical Methods in Biomedical Engineering, 2015,<br>31, e02697. | 2.1 | 29        |
| 32 | A dielectric elastomer actuator coupled with water: snap-through instability and giant deformation.<br>Proceedings of SPIE, 2015, , .                                                                                   | 0.8 | 2         |
| 33 | A Semi-Explicit Finite Element Method for Dynamic Analysis of Dielectric Elastomers. International<br>Journal of Computational Methods, 2015, 12, 1350108.                                                              | 1.3 | 11        |
| 34 | A Smoothed Finite Element Method (S-FEM) for Large-Deformation Elastoplastic Analysis.<br>International Journal of Computational Methods, 2015, 12, 1540011.                                                            | 1.3 | 10        |
| 35 | A Finite Element Method for Inhomogeneous Deformation of Viscoelastic Dielectric Elastomers.<br>International Journal of Applied Mechanics, 2015, 07, 1550069.                                                          | 2.2 | 28        |
| 36 | Giant voltage-induced deformation of a dielectric elastomer under a constant pressure. Applied Physics Letters, 2014, 105, 112901.                                                                                      | 3.3 | 55        |

ZHI-QIAN ZHANG

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Solution bound and nearly exact solution to nonlinear solid mechanics problems based on the smoothed FEM concept. Engineering Analysis With Boundary Elements, 2014, 42, 99-114.                                                          | 3.7 | 24        |
| 38 | Selective smoothed finite element methods for extremely large deformation of anisotropic<br>incompressible bioâ€ŧissues. International Journal for Numerical Methods in Engineering, 2014, 99,<br>587-610.                                | 2.8 | 38        |
| 39 | Multiscale Finite Element Analysis of Unbonded Flexible Risers. , 2014, , .                                                                                                                                                               |     | 3         |
| 40 | A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid–structure interaction problems. Computational Mechanics, 2013, 51, 129-150.                                                                             | 4.0 | 62        |
| 41 | A stabilized finite element method for certified solution with bounds in static and frequency analyses<br>of piezoelectric structures. Computer Methods in Applied Mechanics and Engineering, 2012, 241-244,<br>65-81.                    | 6.6 | 15        |
| 42 | Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves. Computational Mechanics, 2012, 50, 789-804.                                                                                          | 4.0 | 71        |
| 43 | Immersed smoothed finite element method for two dimensional fluid–structure interaction problems. International Journal for Numerical Methods in Engineering, 2012, 90, 1292-1320.                                                        | 2.8 | 68        |
| 44 | AN IMMERSED SMOOTHED FINITE ELEMENT METHOD FOR FLUID–STRUCTURE INTERACTION PROBLEMS.<br>International Journal of Computational Methods, 2011, 08, 747-757.                                                                                | 1.3 | 34        |
| 45 | An edgeâ€based smoothed finite element method (ESâ€FEM) using 3â€node triangular elements for 3D<br>nonâ€inear analysis of spatial membrane structures. International Journal for Numerical Methods in<br>Engineering, 2011, 86, 135-154. | 2.8 | 27        |
| 46 | Nonlinear 3D numerical computations for the square membrane versus experimental data. Engineering Structures, 2011, 33, 1828-1837.                                                                                                        | 5.3 | 9         |
| 47 | Temporal stabilization of the node-based smoothed finite element method and solution bound of linear elastostatics and vibration problems. Computational Mechanics, 2010, 46, 229-246.                                                    | 4.0 | 89        |
| 48 | Upper and lower bounds for natural frequencies: A property of the smoothed finite element methods.<br>International Journal for Numerical Methods in Engineering, 2010, 84, 149-178.                                                      | 2.8 | 13        |
| 49 | Removing Void Elements for Structural Level Set Topology Optimizaiton. Journal of Computational Science and Technology, 2009, 3, 385-395.                                                                                                 | 0.4 | Ο         |
| 50 | Moving leastâ€squares approximation with discontinuous derivative basis functions for shell<br>structures with slope discontinuities. International Journal for Numerical Methods in Engineering,<br>2008, 76, 1202-1230.                 | 2.8 | 11        |
| 51 | Propagation of instability in dielectric elastomers. International Journal of Solids and Structures, 2008, 45, 3739-3750.                                                                                                                 | 2.7 | 143       |
| 52 | Interface Tracking in Meshfree Methods and its Applications. Lecture Notes in Computational Science and Engineering, 2008, , 173-188.                                                                                                     | 0.3 | 0         |