Burkhard Becher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3133647/publications.pdf

Version: 2024-02-01

233 papers 32,511 citations

4388 86 h-index 4548 171 g-index

252 all docs 252 docs citations

times ranked

252

43142 citing authors

#	Article	IF	Citations
1	Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Science Immunology, 2022, 7, eabf7777.	11.9	167
2	IFN \hat{I}^3 and GM-CSF control complementary differentiation programs in the monocyte-to-phagocyte transition during neuroinflammation. Nature Immunology, 2022, 23, 217-228.	14.5	57
3	Response to Are NKT cells a useful predictor of COVID-19 severity?. Immunity, 2022, 55, 188-189.	14.3	O
4	TGF-Î ² production by eosinophils drives the expansion of peripherally induced neuropilinâ ² RORÎ ³ t+ regulatory T-cells during bacterial and allergen challenge. Mucosal Immunology, 2022, 15, 504-514.	6.0	11
5	Reply to â€~Comment on: Repositioning TH cell polarization from single cytokines to complex help'. Nature Immunology, 2022, 23, 503-504.	14.5	1
6	Twin study reveals non-heritable immune perturbations in multiple sclerosis. Nature, 2022, 603, 152-158.	27.8	45
7	Immunological Predictors of Dimethyl Fumarateâ€Induced Lymphopenia. Annals of Neurology, 2022, 91, 676-681.	5. 3	8
8	TH Cells and Cytokines in Encephalitogenic Disorders. Frontiers in Immunology, 2022, 13, 822919.	4.8	19
9	Single-cell profiling of immune system alterations in lymphoid, barrier and solid tissues in aged mice. Nature Aging, 2022, 2, 74-89.	11.6	16
10	Tissue-resident memory CD8 ⁺ T cells cooperate with CD4 ⁺ T cells to drive compartmentalized immunopathology in the CNS. Science Translational Medicine, 2022, 14, eabl6058.	12.4	21
11	Single-cell multiomics in neuroinflammation. Current Opinion in Immunology, 2022, 76, 102180.	5.5	3
12	Unravelling the sex-specific diversity and functions of adrenal gland macrophages. Cell Reports, 2022, 39, 110949.	6.4	13
13	CYBB/NOX2 in conventional DCs controls T cell encephalitogenicity during neuroinflammation. Autophagy, 2021, 17, 1244-1258.	9.1	39
14	Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nature Communications, 2021, 12, 444.	12.8	150
15	Nonâ€neutralizing antibodies protect against chronic LCMV infection by promoting infection of inflammatory monocytes in mice. European Journal of Immunology, 2021, 51, 1423-1435.	2.9	5
16	Mass Cytometry of CSF Identifies an MS-Associated B-cell Population. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	19
17	CD39+PD-1+CD8+ T cells mediate metastatic dormancy in breast cancer. Nature Communications, 2021, 12, 769.	12.8	42
18	IL-17 controls central nervous system autoimmunity through the intestinal microbiome. Science Immunology, 2021, 6, .	11.9	67

#	Article	IF	CITATIONS
19	Pericytes regulate vascular immune homeostasis in the CNS. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	86
20	NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature, 2021, 592, 450-456.	27.8	649
21	Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathologica, 2021, 141, 901-915.	7.7	28
22	Monocytes promote UVâ€induced epidermal carcinogenesis. European Journal of Immunology, 2021, 51, 1799-1808.	2.9	7
23	CD169+ lymph node macrophages have protective functions in mouse breast cancer metastasis. Cell Reports, 2021, 35, 108993.	6.4	26
24	GM-CSF instigates a dendritic cell–T-cell inflammatory circuit that drives chronic asthma development. Journal of Allergy and Clinical Immunology, 2021, 147, 2118-2133.e3.	2.9	21
25	Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. International Journal of Molecular Sciences, 2021, 22, 6820.	4.1	3
26	Conventional NK cells and tissue-resident ILC1s join forces to control liver metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	63
27	Distinct immunological signatures discriminate severe COVID-19 from non-SARS-CoV-2-driven critical pneumonia. Immunity, 2021, 54, 1578-1593.e5.	14.3	75
28	Alveolar macrophages rely on GM-CSF from alveolar epithelial type 2 cells before and after birth. Journal of Experimental Medicine, 2021, 218, .	8.5	70
29	Repositioning TH cell polarization from single cytokines to complex help. Nature Immunology, 2021, 22, 1210-1217.	14.5	91
30	Brown adipose tissue monocytes support tissue expansion. Nature Communications, 2021, 12, 5255.	12.8	23
31	Gut-licensed IFNÎ ³ + NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature, 2021, 590, 473-479.	27.8	178
32	Two populations of self-maintaining monocyte-independent macrophages exist in adult epididymis and testis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	49
33	IL-12 regulates type 3 immunity through interfollicular keratinocytes in psoriasiform inflammation. Science Immunology, 2021, 6, eabg9012.	11.9	14
34	GM-CSF: Master regulator of the T cell-phagocyte interface during inflammation. Seminars in Immunology, 2021, 54, 101518.	5.6	25
35	Protection against autoimmunity is driven by thymic epithelial cell–mediated regulation of T _{reg} development. Science Immunology, 2021, 6, eabf3111.	11.9	6
36	Tumor cell-derived IL-10 promotes cell-autonomous growth and immune escape in diffuse large B-cell lymphoma. Oncolmmunology, 2021, 10, 2003533.	4.6	18

3

#	Article	IF	Citations
37	Glial Cells as Regulators of Neuroimmune Interactions in the Central Nervous System. Journal of Immunology, 2020, 204, 251-255.	0.8	27
38	Targeting interleukin-17 in chronic inflammatory disease: A clinical perspective. Journal of Experimental Medicine, 2020, 217, .	8.5	55
39	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	27.8	108
40	Group 3 Innate Lymphoid Cells Program a Distinct Subset of IL-22BP-Producing Dendritic Cells Demarcating Solitary Intestinal Lymphoid Tissues. Immunity, 2020, 53, 1015-1032.e8.	14.3	41
41	The AP1 Transcription Factor Fosl2 Promotes Systemic Autoimmunity and Inflammation by Repressing Treg Development. Cell Reports, 2020, 31, 107826.	6.4	59
42	The GM-CSF–IRF5 signaling axis in eosinophils promotes antitumor immunity through activation of type 1 T cell responses. Journal of Experimental Medicine, 2020, 217, .	8.5	45
43	Plaque-associated myeloid cells derive from resident microglia in an Alzheimer's disease model. Journal of Experimental Medicine, 2020, 217, .	8.5	45
44	Protein Tyrosine Phosphatase Non-Receptor Type 2 Function in Dendritic Cells Is Crucial to Maintain Tissue Tolerance. Frontiers in Immunology, 2020, 11, 1856.	4.8	14
45	Anti-human CD117 CAR T-cells efficiently eliminate healthy and malignant CD117-expressing hematopoietic cells. Leukemia, 2020, 34, 2688-2703.	7.2	52
46	Single-Cell Mapping of Human Brain Cancer Reveals Tumor-Specific Instruction of Tissue-Invading Leukocytes. Cell, 2020, 181, 1626-1642.e20.	28.9	388
47	GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nature Reviews Immunology, 2020, 20, 507-514.	22.7	174
48	Microglial Homeostasis Requires Balanced CSF-1/CSF-2 Receptor Signaling. Cell Reports, 2020, 30, 3004-3019.e5.	6.4	53
49	Tumor invasion in draining lymph nodes is associated with Treg accumulation in breast cancer patients. Nature Communications, 2020, 11, 3272.	12.8	106
50	Granulocyte-Macrophage Colony Stimulating Factor As an Indirect Mediator of Nociceptor Activation and Pain. Journal of Neuroscience, 2020, 40, 2189-2199.	3.6	22
51	Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nature Communications, 2020, 11 , 931 .	12.8	112
52	Extracorporeal Photopheresis for Colitis Induced by Checkpoint-Inhibitor Therapy. New England Journal of Medicine, 2020, 382, 294-296.	27.0	19
53	Sirt6 deletion in bone marrow-derived cells increases atherosclerosis – Central role of macrophage scavenger receptor 1. Journal of Molecular and Cellular Cardiology, 2020, 139, 24-32.	1.9	26
54	Early Fate Defines Microglia and Non-parenchymal Brain Macrophage Development. Cell, 2020, 181, 557-573.e18.	28.9	218

#	Article	IF	CITATIONS
55	Oncogenic KrasG12D causes myeloproliferation via NLRP3 inflammasome activation. Nature Communications, 2020, 11 , 1659 .	12.8	92
56	Skipping adolescence to become super-inflammatory monocytes. Nature Immunology, 2020, 21, 491-492.	14.5	0
57	MAFG-driven astrocytes promote CNS inflammation. Nature, 2020, 578, 593-599.	27.8	282
58	Single cell mapping of human brain tumors reveals tumor-specific education of tissue-invading leukocytes Journal of Clinical Oncology, 2020, 38, 2509-2509.	1.6	1
59	Association of peripheral blood CD4+ T-cell depletion under temozolomide with inferior survival of patients with IDH wildtype glioblastoma Journal of Clinical Oncology, 2020, 38, 2548-2548.	1.6	0
60	IMMU-16. INTRA-TUMOURAL IL-12 DELIVERY ENABLES CAR T-CELL IMMUNOTHERAPY FOR HIGH-GRADE GLIOMA. Neuro-Oncology, 2020, 22, iii363-iii363.	1.2	0
61	Epithelial proliferation in inflammatory skin disease is regulated by tetratricopeptide repeat domain 7 (Ttc7) in fibroblasts and lymphocytes. Journal of Allergy and Clinical Immunology, 2019, 143, 292-304.e8.	2.9	4
62	GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nature Medicine, 2019, 25, 1290-1300.	30.7	140
63	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
64	The CNS Immune Landscape from the Viewpoint of a T Cell. Trends in Neurosciences, 2019, 42, 667-679.	8.6	63
65	SerpinB1 controls encephalitogenic T helper cells in neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20635-20643.	7.1	23
66	ARTD1 in Myeloid Cells Controls the IL-12/18–IFN-γ Axis in a Model of Sterile Sepsis, Chronic Bacterial Infection, and Cancer. Journal of Immunology, 2019, 202, 1406-1416.	0.8	16
67	Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Science Immunology, 2019, 4, .	11.9	173
68	Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders. Lancet Neurology, The, 2019, 18, 185-197.	10.2	110
69	CD8+ T cells retain protective functions despite sustained inhibitory receptor expression during Epstein-Barr virus infection in vivo. PLoS Pathogens, 2019, 15, e1007748.	4.7	57
70	Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nature Protocols, 2019, 14, 1946-1969.	12.0	147
71	Fate-Mapping of GM-CSF Expression Identifies a Discrete Subset of Inflammation-Driving T Helper Cells Regulated by Cytokines IL-23 and IL- $1\hat{l}^2$. Immunity, 2019, 50, 1289-1304.e6.	14.3	163
72	Innate lymphoid cells as regulators of the tumor microenvironment. Seminars in Immunology, 2019, 41, 101270.	5.6	23

#	Article	IF	Citations
73	Targeted Delivery of IL2 to the Tumor Stroma Potentiates the Action of Immune Checkpoint Inhibitors by Preferential Activation of NK and CD8+ T Cells. Cancer Immunology Research, 2019, 7, 572-583.	3.4	47
74	Immunization against poly- $\langle i\rangle N\langle i\rangle$ -acetylglucosamine reduces neutrophil activation and GVHD while sparing microbial diversity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20700-20706.	7.1	25
75	IL-23 supports host defense against systemic Candida albicans infection by ensuring myeloid cell survival. PLoS Pathogens, 2019, 15, e1008115.	4.7	28
76	Inactivation of sphingosine-1-phosphate receptor 2 (S1PR2) decreases demyelination and enhances remyelination in animal models of multiple sclerosis. Neurobiology of Disease, 2019, 124, 189-201.	4.4	32
77	The end of omics? High dimensional single cell analysis in precision medicine. European Journal of Immunology, 2019, 49, 212-220.	2.9	33
78	Mitochondrial arginase-2 is a cell‑autonomous regulator of CD8+ T cell function and antitumor efficacy. JCI Insight, 2019, 4, .	5.0	47
79	High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease. Immunity, 2018, 48, 380-395.e6.	14.3	638
80	Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nature Medicine, 2018, 24, 282-291.	30.7	216
81	High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nature Medicine, 2018, 24, 144-153.	30.7	564
82	ACTR-16. PERIPHERAL BLOOD CD4+ MONONUCLEAR CELL FRACTIONS ARE ASSOCIATED WITH OVERALL SURVIVAL AT FIRST RECURRENCE OF IDH-WILDTYPE GLIOBLASTOMA AFTER STANDARD CHEMORADIOTHERAPY: SECONDARY ANALYSES OF THE PHASE II DIRECTOR TRIAL. Neuro-Oncology, 2018, 20, vi14-vi14.	1.2	0
83	Graft-versus-host disease, but not graft-versus-leukemia immunity, is mediated by GM-CSF–licensed myeloid cells. Science Translational Medicine, 2018, 10, .	12.4	68
84	Regulatory T Cells Restrain Pathogenic T Helper Cells during Skin Inflammation. Cell Reports, 2018, 25, 3564-3572.e4.	6.4	49
85	T cells in patients withÂnarcolepsy target self-antigens of hypocretin neurons. Nature, 2018, 562, 63-68.	27.8	244
86	Conditional Gene-Targeting in Mice: Problems and Solutions. Immunity, 2018, 48, 835-836.	14.3	49
87	Abstract 566: High dimensional single cell analysis predicts response to anti-PD-1 immunotherapy. , 2018, , .		2
88	CSF1R-dependent myeloid cells are required for NK‑mediated control of metastasis. JCI Insight, 2018, 3, .	5.0	38
89	Anti-Human CD117 CAR T-Cells Efficiently Eliminate Hematopoietic Stem and CD117-Positive AML Cells. Blood, 2018, 132, 4063-4063.	1.4	3
90	High Dimensional Cytometry of Central Nervous System Leukocytes During Neuroinflammation. Methods in Molecular Biology, 2017, 1559, 321-332.	0.9	13

#	Article	IF	CITATIONS
91	Dysregulation of the Cytokine GM-CSF Induces Spontaneous Phagocyte Invasion and Immunopathology in the Central Nervous System. Immunity, 2017, 46, 245-260.	14.3	141
92	Cytokine networks in neuroinflammation. Nature Reviews Immunology, 2017, 17, 49-59.	22.7	479
93	The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. Journal of Experimental Medicine, 2017, 214, 3293-3310.	8.5	161
94	Guidelines for the use of flow cytometry and cell sorting in immunological studies < sup>*. European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
95	Restoration of Natural Killer Cell Antimetastatic Activity by IL12 and Checkpoint Blockade. Cancer Research, 2017, 77, 7059-7071.	0.9	64
96	Loss of PTPN2 in Dendritic Cells Affects Expression of Pro-Inflammatory Cytokines but has no Major Role in the Intestine. Gastroenterology, 2017, 152, S757.	1.3	0
97	Tissue microenvironment dictates the fate and tumor-suppressive function of type 3 ILCs. Journal of Experimental Medicine, 2017, 214, 2331-2347.	8.5	78
98	ATG-dependent phagocytosis in dendritic cells drives myelin-specific CD4 ⁺ T cell pathogenicity during CNS inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11228-E11237.	7.1	67
99	IL-27, but not IL-35, inhibits neuroinflammation through modulating GM-CSF expression. Scientific Reports, 2017, 7, 16547.	3.3	30
100	The Cytokine TGF- \hat{l}^2 Promotes the Development and Homeostasis of Alveolar Macrophages. Immunity, 2017, 47, 903-912.e4.	14.3	235
101	Lymphatic Endothelial Cells Control Initiation of Lymph Node Organogenesis. Immunity, 2017, 47, 80-92.e4.	14.3	107
102	CyTOF workflow: Differential discovery in high-throughput high-dimensional cytometry datasets. F1000Research, 2017, 6, 748.	1.6	312
103	CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Research, 2017, 6, 748.	1.6	244
104	Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis. Nature Communications, 2016, 7, 13708.	12.8	24
105	T cell-specific inactivation of mouse CD2 by CRISPR/Cas9. Scientific Reports, 2016, 6, 21377.	3.3	11
106	The end of gating? An introduction to automated analysis of high dimensional cytometry data. European Journal of Immunology, 2016, 46, 34-43.	2.9	236
107	Epithelial IL-23R Signaling Licenses Protective IL-22 Responses in Intestinal Inflammation. Cell Reports, 2016, 16, 2208-2218.	6.4	89
108	IL-12 protects from psoriasiform skin inflammation. Nature Communications, 2016, 7, 13466.	12.8	151

#	Article	IF	CITATIONS
109	BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. Journal of Experimental Medicine, 2016, 213, 1537-1553.	8.5	66
110	GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. Immunity, 2016, 45, 963-973.	14.3	417
111	Sall1 is a transcriptional regulator defining microglia identity and function. Nature Immunology, 2016, 17, 1397-1406.	14.5	430
112	High-dimensional single-cell analysis reveals the immune signature of narcolepsy. Journal of Experimental Medicine, 2016, 213, 2621-2633.	8.5	106
113	IL17A-Mediated Endothelial Breach Promotes Metastasis Formation. Cancer Immunology Research, 2016, 4, 26-32.	3.4	40
114	NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22. Journal of Clinical Investigation, 2016, 126, 1783-1800.	8.2	171
115	Abstract A127: Innate crosstalk between ILC and interstitial macrophages promotes lung cancer regression in response to IL-12 therapy. , 2016, , .		0
116	Alternative NFâ€PB signaling regulates mTEC differentiation from podoplaninâ€expressing precursors in the corticoâ€medullary junction. European Journal of Immunology, 2015, 45, 2218-2231.	2.9	77
117	Deletion of Jun Proteins in Adult Oligodendrocytes Does Not Perturb Cell Survival, or Myelin Maintenance In Vivo. PLoS ONE, 2015, 10, e0120454.	2.5	1
118	Mature oligodendrocytes actively increase in vivo cytoskeletal plasticity following CNS damage. Journal of Neuroinflammation, 2015, 12, 62.	7.2	7
119	Dermal ILâ€17â€producing γδT cells establish longâ€lived memory in the skin. European Journal of Immunology, 2015, 45, 3022-3033.	2.9	86
120	The Good, the Bad, or the Pretty: IL-17 Builds Lymphoid Tissues in the Brain. Immunity, 2015, 43, 1033-1034.	14.3	0
121	Rational Combination of Immunotherapies with Clinical Efficacy in Mice with Advanced Cancer. Cancer Immunology Research, 2015, 3, 1279-1288.	3.4	3
122	C-Myb+ Erythro-Myeloid Progenitor-Derived Fetal Monocytes Give Rise to Adult Tissue-Resident Macrophages. Immunity, 2015, 42, 665-678.	14.3	847
123	Immune attack: the role of inflammation in Alzheimer disease. Nature Reviews Neuroscience, 2015, 16, 358-372.	10.2	1,677
124	Neutralization of colony-stimulating factor 1 receptor prevents sickness behavior syndrome by reprogramming inflammatory monocytes to produce IL-10. Brain, Behavior, and Immunity, 2015, 48, 78-85.	4.1	8
125	Helicobacter pylori–specific Protection Against Inflammatory Bowel Disease Requires the NLRP3 Inflammasome and IL-18. Inflammatory Bowel Diseases, 2015, 21, 854-861.	1.9	65
126	Programming Hippocampal Neural Stem/Progenitor Cells into Oligodendrocytes Enhances Remyelination in the Adult Brain after Injury. Cell Reports, 2015, 11, 1679-1685.	6.4	50

#	Article	IF	CITATIONS
127	GM-CSF in Neuroinflammation: Licensing Myeloid Cells for Tissue Damage. Trends in Immunology, 2015, 36, 651-662.	6.8	112
128	Innate and adaptive immune responses in the CNS. Lancet Neurology, The, 2015, 14, 945-955.	10.2	107
129	The Cytokine GM-CSF Drives the Inflammatory Signature of CCR2+ Monocytes and Licenses Autoimmunity. Immunity, 2015, 43, 502-514.	14.3	391
130	Astrocyte Depletion Impairs Redox Homeostasis and Triggers Neuronal Loss in the Adult CNS. Cell Reports, 2015, 12, 1377-1384.	6.4	92
131	Disease Control in Cutaneous Leishmaniasis Is Independent of IL-22. Journal of Investigative Dermatology, 2015, 135, 308-311.	0.7	11
132	Perspectives on cytokine-directed therapies in multiple sclerosis. Swiss Medical Weekly, 2015, 145, w14199.	1.6	10
133	The NFκB-inducing kinase is essential for the developmental programming of skin-resident and IL-17-producing γδT cells. ELife, 2015, 4, .	6.0	36
134	T Cell Contamination in Flow Cytometry Gating Approaches for Analysis of Innate Lymphoid Cells. PLoS ONE, 2014, 9, e94196.	2.5	14
135	Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nature Communications, 2014, 5, 5611.	12.8	177
136	Endothelial overexpression of LOX-1 increases plaque formation and promotes atherosclerosis in vivo. European Heart Journal, 2014, 35, 2839-2848.	2.2	82
137	<scp>T</scp> hy1 ⁺ <scp>S</scp> ca1 ⁺ innate lymphoid cells infiltrate the <scp>CNS</scp> during autoimmune inflammation, but do not contribute to disease development. European Journal of Immunology, 2014, 44, 37-45.	2.9	18
138	High-dimensional analysis of the murine myeloid cell system. Nature Immunology, 2014, 15, 1181-1189.	14.5	349
139	The role of NFkappaB inducing kinase (NIK) in the pathogenicity of EAE. Journal of Neuroimmunology, 2014, 275, 202.	2.3	O
140	Defining the role of IL-23 in autoimmune neuroinflammation. Journal of Neuroimmunology, 2014, 275, 136.	2.3	0
141	Loss of IGF1R from oligodendrocytes ameliorates neuroinflammation without affecting cell survival. Journal of Neuroimmunology, 2014, 275, 123.	2.3	0
142	Innate memory formation in neuroimmune interactions in psoriasis. Journal of Neuroimmunology, 2014, 275, 85.	2.3	0
143	Targeting microglia using the specific transcription factor Sall 1. Journal of Neuroimmunology, 2014, 275, 83.	2.3	0
144	Plastic response of mature oligodendrocytes following CNS damage. Journal of Neuroimmunology, 2014, 275, 186.	2.3	0

#	Article	IF	Citations
145	Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science, 2014, 345, 1254009.	12.6	450
146	IL-12-and IL-23 in health and disease. Cytokine and Growth Factor Reviews, 2014, 25, 415-421.	7.2	117
147	Multiple sclerosis-associated IL2RA polymorphism controls GM-CSF production in human TH cells. Nature Communications, 2014, 5, 5056.	12.8	137
148	Cytokine Complex–expanded Natural Killer Cells Improve Allogeneic Lung Transplant Function via Depletion of Donor Dendritic Cells. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 1349-1359.	5.6	40
149	Langerin ^{neg} conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10723-10728.	7.1	158
150	Communication between pathogenic T cells and myeloid cells in neuroinflammatory disease. Trends in Immunology, 2013, 34, 114-119.	6.8	62
151	Does dietary salt induce autoimmunity?. Cell Research, 2013, 23, 872-873.	12.0	10
152	Neuroprotective intervention by interferon-γ blockade prevents CD8+ T cell–mediated dendrite and synapse loss. Journal of Experimental Medicine, 2013, 210, 2087-2103.	8.5	77
153	TGF-Î ² Signalling Is Required for CD4+ T Cell Homeostasis But Dispensable for Regulatory T Cell Function. PLoS Biology, 2013, 11, e1001674.	5.6	85
154	Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell–mediated glioma rejection. Journal of Experimental Medicine, 2013, 210, 2803-2811.	8.5	177
155	Tâ€bet or not Tâ€bet: Taking the last bow on the autoimmunity stage. European Journal of Immunology, 2013, 43, 2810-2813.	2.9	14
156	Primary oligodendrocyte death does not elicit anti-CNS immunity. Nature Neuroscience, 2012, 15, 543-550.	14.8	121
157	Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease–like pathology and cognitive decline. Nature Medicine, 2012, 18, 1812-1819.	30.7	359
158	Hiding under the skin: Interleukin-17–producing γδT cells go under the skin?. Nature Medicine, 2012, 18, 1748-1750.	30.7	76
159	Stroma-Derived Interleukin-34 Controls the Development and Maintenance of Langerhans Cells and the Maintenance of Microglia. Immunity, 2012, 37, 1050-1060.	14.3	482
160	Acquitting an <scp>APC</scp> : <scp>DC</scp> s found "not guilty―after trial by ablation. European Journal of Immunology, 2012, 42, 2551-2554.	2.9	4
161	IL- $1\hat{l}^2$ mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells. Journal of Experimental Medicine, 2012, 209, 1595-1609.	8.5	485
162	<scp>IL</scp> â€23: One cytokine in control of autoimmunity. European Journal of Immunology, 2012, 42, 2263-2273.	2.9	147

#	Article	IF	Citations
163	IL-12 superfamily members guiding the function of Ror \hat{I}^3 t-dependent innate lymphocytes. Journal of Translational Medicine, 2012, 10, .	4.4	O
164	Ror \hat{I}^3 t+ innate lymphocytes and $\hat{I}^3\hat{I}^7$ T cells initiate psoriasiform plaque formation in mice. Journal of Clinical Investigation, 2012, 122, 2252-2256.	8.2	456
165	Evaluation of OPEN Zinc Finger Nucleases for Direct Gene Targeting of the ROSA26 Locus in Mouse Embryos. PLoS ONE, 2012, 7, e41796.	2.5	34
166	Dietary \hat{l}_{\pm} -linolenic acid diminishes experimental atherogenesis and restricts T cell-driven inflammation. European Heart Journal, 2011, 32, 2573-2584.	2.2	56
167	Dendritic Cells Prevent Rather Than Promote Immunity Conferred by a Helicobacter Vaccine Using a Mycobacterial Adjuvant. Gastroenterology, 2011, 141, 186-196.e1.	1.3	66
168	TH17 cytokines in autoimmune neuro-inflammation. Current Opinion in Immunology, 2011, 23, 707-712.	5.5	150
169	IL-22 Is Produced by Innate Lymphoid Cells and Limits Inflammation in Allergic Airway Disease. PLoS ONE, 2011, 6, e21799.	2.5	118
170	$ROR\hat{l}^3$ t drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nature Immunology, 2011, 12, 560-567.	14.5	1,058
171	CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathologica, 2011, 121, 445-458.	7.7	130
172	CNS live imaging reveals a new mechanism of myelination: The liquid croissant model. Glia, 2011, 59, 1841-1849.	4.9	50
173	NIK signaling in dendritic cells but not in T cells is required for the development of effector T cells and cell-mediated immune responses. Journal of Experimental Medicine, 2011, 208, 1917-1929.	8.5	62
174	Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. Journal of Clinical Investigation, 2011, 121, 3088-3093.	8.2	391
175	Cytokine networks in multiple sclerosis: lost in translation. Current Opinion in Neurology, 2010, 23, 205-211.	3.6	79
176	Building a zoo of mice for genetic analyses: A comprehensive protocol for the rapid generation of BAC transgenic mice. Genesis, 2010, 48, 264-280.	1.6	19
177	IL-12 initiates tumor rejection via lymphoid tissue–inducer cells bearing the natural cytotoxicity receptor NKp46. Nature Immunology, 2010, 11, 1030-1038.	14.5	188
178	Cellular mechanisms of ILâ€17â€induced bloodâ€brain barrier disruption. FASEB Journal, 2010, 24, 1023-1034.	0.5	389
179	Histamine H1 Receptor Promotes Atherosclerotic Lesion Formation by Increasing Vascular Permeability for Low-Density Lipoproteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 923-930.	2.4	67
180	SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis. European Heart Journal, 2010, 31, 2301-2309.	2.2	189

#	Article	IF	CITATIONS
181	B-cells need a proper house, whereas T-cells are happy in a cave: the dependence of lymphocytes on secondary lymphoid tissues during evolution. Trends in Immunology, 2010, 31, 144-153.	6.8	62
182	IL-9 as a mediator of Th17-driven inflammatory disease. Journal of Experimental Medicine, 2009, 206, 1653-1660.	8.5	334
183	Th17 cells in autoimmune disease: changing the verdict. Immunotherapy, 2009, 1, 199-203.	2.0	17
184	Neo-Lymphoid Aggregates in the Adult Liver Can Initiate Potent Cell-Mediated Immunity. PLoS Biology, 2009, 7, e1000109.	5.6	33
185	ILâ€23â€driven encephaloâ€tropism and Th17 polarization during CNSâ€inflammation <i>in vivo</i> i>. European Journal of Immunology, 2009, 39, 1864-1869.	2.9	61
186	Modeling multiple sclerosis in laboratory animals. Seminars in Immunopathology, 2009, 31, 479-495.	6.1	53
187	ROR \hat{I}^3 -Expressing Th17 Cells Induce Murine Chronic Intestinal Inflammation via Redundant Effects of IL-17A and IL-17F. Gastroenterology, 2009, 136, 257-267.	1.3	408
188	Collateral Bystander Damage by Myelin-Directed CD8+ T Cells Causes Axonal Loss. American Journal of Pathology, 2009, 175, 1160-1166.	3.8	75
189	IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. Journal of Clinical Investigation, 2009, 119, 61-9.	8.2	347
190	Experimental immunology in Zürich: The legacy of studying diseaseâ€related Ag. European Journal of Immunology, 2008, 38, 2924-2926.	2.9	1
191	Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nature Immunology, 2008, 9, 137-145.	14.5	358
192	Distinct and Nonredundant In Vivo Functions of IFNAR on Myeloid Cells Limit Autoimmunity in the Central Nervous System. Immunity, 2008, 28, 675-686.	14.3	352
193	Central Nervous System Immune Surveillance. Archives of Neurology, 2008, 65, 1566-7.	4.5	7
194	Therapeutic Antibodies in Multiple Sclerosis. Neurodegenerative Diseases, 2008, 5, 5-7.	1.4	0
195	Dendritic Cells Require the NF-κB2 Pathway for Cross-Presentation of Soluble Antigens. Journal of Immunology, 2008, 181, 354-363.	0.8	63
196	The Fas pathway is involved in pancreatic beta cell secretory function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2861-2866.	7.1	83
197	Pathogen Specificity and Autoimmunity Are Distinct Features of Antigen-Driven Immune Responses in Neuroborreliosis. Infection and Immunity, 2007, 75, 3842-3847.	2.2	34
198	IL-22 Is Expressed by Th17 Cells in an IL-23-Dependent Fashion, but Not Required for the Development of Autoimmune Encephalomyelitis. Journal of Immunology, 2007, 179, 8098-8104.	0.8	298

#	Article	IF	CITATIONS
199	Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nature Medicine, 2007, 13, 1173-1175.	30.7	1,442
200	Germinal center B cells are dispensable in prion transport and neuroinvasion. Journal of Neuroimmunology, 2007, 192, 113-123.	2.3	17
201	APC-derived cytokines and T cell polarization in autoimmune inflammation. Journal of Clinical Investigation, 2007, 117, 1119-1127.	8.2	362
202	Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. Journal of Clinical Investigation, 2006, 116, 456-464.	8.2	329
203	Interleukin 18–independent engagement of interleukin 18 receptor-α is required for autoimmune inflammation. Nature Immunology, 2006, 7, 946-953.	14.5	149
204	Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. Journal of Molecular Medicine, 2006, 84, 532-543.	3.9	204
205	Autoantibody-mediated demyelination depends on complement activation but not activatory Fc-receptors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18697-18702.	7.1	59
206	Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nature Medicine, 2005, 11, 146-152.	30.7	667
207	Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nature Medicine, 2005, 11, 328-334.	30.7	775
208	IL-23: changing the verdict on IL-12 function in inflammation and autoimmunity. Expert Opinion on Therapeutic Targets, 2005, 9, 1123-1136.	3.4	14
209	Humoral immune response to native eukaryotic prion protein correlates with anti-prion protection. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14670-14676.	7.1	105
210	Requirement of JNK2 for Scavenger Receptor A-Mediated Foam Cell Formation in Atherogenesis. Science, 2004, 306, 1558-1561.	12.6	259
211	IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. Journal of Clinical Investigation, 2003, 112, 1186-1191.	8.2	147
212	IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. Journal of Clinical Investigation, 2003, 112, 1186-1191.	8.2	79
213	Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. Journal of Clinical Investigation, 2002, 110, 493-497.	8.2	303
214	Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. Journal of Clinical Investigation, 2002, 110, 493-497.	8.2	206
215	Caspase 8 expression and signaling in Fas injury-resistant human fetal astrocytes. Glia, 2001, 33, 217-224.	4.9	35
216	The Clinical Course of Experimental Autoimmune Encephalomyelitis and Inflammation Is Controlled by the Expression of Cd40 within the Central Nervous System. Journal of Experimental Medicine, 2001, 193, 967-974.	8.5	216

#	Article	IF	Citations
217	Interferon-Î ³ Modulates Human Oligodendrocyte Susceptibility To Fas-Mediated Apoptosis. Journal of Neuropathology and Experimental Neurology, 2000, 59, 280-286.	1.7	107
218	Brain-immune connection: Immuno-regulatory properties of CNS-resident cells. Glia, 2000, 29, 293-304.	4.9	323
219	CD40 engagement stimulates IL-12 p70 production by human microglial cells: basis for Th1 polarization in the CNS. Journal of Neuroimmunology, 2000, 102, 44-50.	2.3	66
220	B7 Expression and Antigen Presentation by Human Brain Endothelial Cells: Requirement for Proinflammatory Cytokines. Journal of Neuropathology and Experimental Neurology, 2000, 59, 129-136.	1.7	58
221	Brain-immune connection: Immuno-regulatory properties of CNS-resident cells. Glia, 2000, 29, 293.	4.9	11
222	Interferon-? secretion by peripheral blood T-cell subsets in multiple sclerosis: Correlation with disease phase and interferon-? therapy. Annals of Neurology, 1999, 45, 247-250.	5. 3	86
223	Expression of a homologue of rat NG2 on human microglia. , 1999, 27, 259-268.		51
224	Interferonâ€Ĵ³ secretion by peripheral blood Tâ€cell subsets in multiple sclerosis: Correlation with disease phase and interferonâ€Ĵ² therapy. Annals of Neurology, 1999, 45, 247-250.	5. 3	2
225	CD95–CD95L: can the brain learn from the immune system?. Trends in Neurosciences, 1998, 21, 114-116.	8.6	62
226	Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. Journal of Neuroimmunology, 1997, 78, 97-107.	2.3	250
227	PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 1997, 50, 345-353.	2.9	279
228	PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 1997, 50, 345-353.	2.9	2
229	Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia. Glia, 1996, 18, 1-10.	4.9	200
230	Immunotherapy for multiple sclerosis: From theory to practice. Nature Medicine, 1996, 2, 1074-1075.	30.7	20
231	Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia. Glia, 1996, 18, 1-10.	4.9	13
232	CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Research, 0, 6, 748.	1.6	36
233	CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Research, 0, 6, 748.	1.6	16