
Denis Andrienko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3133316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning interfacial charge transfer in atomically precise nanographene–graphene heterostructures by engineering van der Waals interactions. Journal of Chemical Physics, 2022, 156, 074702.	1.2	5
2	Spatially resolved fluorescence of caesium lead halide perovskite supercrystals reveals quasi-atomic behavior of nanocrystals. Nature Communications, 2022, 13, 892.	5.8	15
3	Porphyrin Functionalization of CsPbBrI ₂ /SiO ₂ Core–Shell Nanocrystals Enhances the Stability and Efficiency in Electroluminescent Devices. Advanced Optical Materials, 2022, 10, 2101945.	3.6	2
4	Virtual Screening for Organic Solar Cells and Light Emitting Diodes. Advanced Science, 2022, 9, e2200825.	5.6	13
5	Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgF <i>_x </i> . Science, 2022, 377, 302-306.	6.0	141
6	Quantum Efficiency Enhancement of Lead-Halide Perovskite Nanocrystal LEDs by Organic Lithium Salt Treatment. ACS Applied Materials & Interfaces, 2022, 14, 28985-28996.	4.0	9
7	Improvement of Photophysical Properties of CsPbBr ₃ and Mn ²⁺ :CsPb(Br,Cl) ₃ Perovskite Nanocrystals by Sr ²⁺ Doping for White Light-Emitting Diodes. Journal of Physical Chemistry C, 2022, 126, 11277-11284.	1.5	10
8	Molecular Origin of Balanced Bipolar Transport in Neat Layers of the Emitter CzDBA. Advanced Materials Technologies, 2021, 6, 2000120.	3.0	9
9	Charge Photogeneration in Nonâ€Fullerene Organic Solar Cells: Influence of Excess Energy and Electrostatic Interactions. Advanced Functional Materials, 2021, 31, 2007479.	7.8	31
10	Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nature Materials, 2021, 20, 378-384.	13.3	257
11	N-Doping improves charge transport and morphology in the organic non-fullerene acceptor O-IDTBR. Journal of Materials Chemistry C, 2021, 9, 4486-4495.	2.7	17
12	Density of States of OLED Host Materials from Thermally Stimulated Luminescence. Physical Review Applied, 2021, 15, .	1.5	14
13	Computing inelastic neutron scattering spectra from molecular dynamics trajectories. Scientific Reports, 2021, 11, 7938.	1.6	7
14	Tuning Single-Molecule Conductance by Controlled Electric Field-Induced trans-to-cis Isomerisation. Applied Sciences (Switzerland), 2021, 11, 3317.	1.3	11
15	Ultra-coarse-graining of homopolymers in inhomogeneous systems. Journal of Physics Condensed Matter, 2021, 33, 254002.	0.7	15
16	Impact of Acceptor Quadrupole Moment on Charge Generation and Recombination in Blends of IDTâ€Based Nonâ€Fullerene Acceptors with PCE10 as Donor Polymer. Advanced Energy Materials, 2021, 11, 2100839.	10.2	23
17	Reduced Intrinsic Nonâ€Radiative Losses Allow Roomâ€Temperature Triplet Emission from Purely Organic Emitters. Advanced Materials, 2021, 33, e2101844.	11.1	28
18	Molecular library of OLED host materials—Evaluating the multiscale simulation workflow. Chemical Physics Reviews, 2021, 2, .	2.6	24

#	Article	IF	CITATIONS
19	Chemical Design Rules for Nonâ€Fullerene Acceptors in Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2102363.	10.2	38
20	Glass transition temperature prediction of disordered molecular solids. Npj Computational Materials, 2021, 7, .	3.5	11
21	Virtual Screening of TADF Emitters for Single-Layer OLEDs. Frontiers in Chemistry, 2021, 9, 800027.	1.8	7
22	Long-range exciton diffusion in molecular non-fullerene acceptors. Nature Communications, 2020, 11, 5220.	5.8	204
23	Computer aided design of stable and efficient OLEDs. Journal of Applied Physics, 2020, 128, .	1.1	14
24	Solid-State Electron Affinity Analysis of Amorphous Fluorinated Polymer Electret. Journal of Physical Chemistry B, 2020, 124, 10507-10513.	1.2	8
25	Barrierless Free Charge Generation in the Highâ€Performance PM6:Y6 Bulk Heterojunction Nonâ€Fullerene Solar Cell. Advanced Materials, 2020, 32, e1906763.	11.1	258
26	Kernel-Based Machine Learning for Efficient Simulations of Molecular Liquids. Journal of Chemical Theory and Computation, 2020, 16, 3194-3204.	2.3	44
27	Multiscale Concepts in Simulations of Organic Semiconductors. , 2020, , 1431-1442.		1
28	Electron Trapping in Conjugated Polymers. Chemistry of Materials, 2019, 31, 6380-6386.	3.2	70
29	Perspectives of Unicolored Phosphor‣ensitized Fluorescence. Advanced Electronic Materials, 2019, 5, 1900646.	2.6	21
30	A window to trap-free charge transport in organic semiconducting thin films. Nature Materials, 2019, 18, 1182-1186.	13.3	131
31	Generic Model for Lamellar Self-Assembly in Conjugated Polymers: Linking Mesoscopic Morphology and Charge Transport in P3HT. Macromolecules, 2019, 52, 968-981.	2.2	36
32	Direct and Energy-Transfer-Mediated Charge-Transfer State Formation and Recombination in Triangulene-Spacer-Perylenediimide Multichromophores: Lessons for Photovoltaic Applications. Journal of Physical Chemistry C, 2019, 123, 16602-16613.	1.5	11
33	Polaron spin dynamics in high-mobility polymeric semiconductors. Nature Physics, 2019, 15, 814-822.	6.5	40
34	Impact of molecular quadrupole moments on the energy levels at organic heterojunctions. Nature Communications, 2019, 10, 2466.	5.8	101
35	Selfâ€Organization and Charge Transport Properties of Selenium and Tellurium Analogues of Polythiophene. Macromolecular Rapid Communications, 2019, 40, e1800596.	2.0	18
36	Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies. Nature Materials, 2018, 17, 329-334.	13.3	168

#	Article	IF	CITATIONS
37	Impact of Nonfullerene Acceptor Core Structure on the Photophysics and Efficiency of Polymer Solar Cells. ACS Energy Letters, 2018, 3, 802-811.	8.8	46
38	Introduction to liquid crystals. Journal of Molecular Liquids, 2018, 267, 520-541.	2.3	233
39	Polymerizing Phostones: A Fast Way to In-Chain Poly(phosphonate)s with Adjustable Hydrophilicity. Macromolecules, 2018, 51, 1272-1279.	2.2	27
40	Efficiency-limiting processes in cyclopentadithiophene-bridged donor-acceptor-type dyes for solid-state dye-sensitized solar cells. Journal of Chemical Physics, 2018, 148, 044703.	1.2	12
41	Unicolored phosphor-sensitized fluorescence for efficient and stable blue OLEDs. Nature Communications, 2018, 9, 4990.	5.8	107
42	Stark effect of hybrid charge transfer states at planar ZnO/organic interfaces. Physical Review B, 2018, 98, .	1.1	12
43	Mechanistic study on the hydrolytic degradation of polyphosphates. European Polymer Journal, 2018, 108, 286-294.	2.6	43
44	Rigorous Characterization and Predictive Modeling of Hole Transport in Amorphous Organic Semiconductors. Advanced Electronic Materials, 2018, 4, 1800366.	2.6	29
45	Recollections of Professor Yuriy Reznikov. Journal of Molecular Liquids, 2018, 267, 11-28.	2.3	1
46	Alcohol- and Water-Tolerant Living Anionic Polymerization of Aziridines. Macromolecules, 2018, 51, 5713-5719.	2.2	29
47	Multiscale Concepts in Simulations of Organic Semiconductors. , 2018, , 1-12.		5
48	Understanding three-body contributions to coarse-grained force fields. Physical Chemistry Chemical Physics, 2018, 20, 22387-22394.	1.3	34
49	Influence of orientation mismatch on charge transport across grain boundaries in tri-isopropylsilylethynyl (TIPS) pentacene thin films. Physical Chemistry Chemical Physics, 2017, 19, 10854-10862.	1.3	27
50	The PCPDTBT Family: Correlations between Chemical Structure, Polymorphism, and Device Performance. Macromolecules, 2017, 50, 1402-1414.	2.2	47
51	Electrochemical TERS Elucidates Potentialâ€Induced Molecular Reorientation of Adenine/Au(111). Angewandte Chemie - International Edition, 2017, 56, 9796-9801.	7.2	76
52	Charge transport in highly ordered organic nanofibrils: lessons from modelling. Journal of Materials Chemistry C, 2017, 5, 350-361.	2.7	22
53	Charge Carrier Generation, Recombination, and Extraction in Polymer–Fullerene Bulk Heterojunction Organic Solar Cells. Advances in Polymer Science, 2017, , 267-291.	0.4	20
54	Modeling of organic light emitting diodes: From molecular to device properties. , 2017, , .		1

#	Article	IF	CITATIONS
55	Electrochemical TERS Elucidates Potentialâ€Induced Molecular Reorientation of Adenine/Au(111). Angewandte Chemie, 2017, 129, 9928-9933.	1.6	12
56	Macroscopic Structural Compositions of π-Conjugated Polymers: Combined Insights from Solid-State NMR and Molecular Dynamics Simulations. Journal of Physical Chemistry Letters, 2017, 8, 4155-4160.	2.1	31
57	A personal recollection: A tribute to Yuriy Reznikov. Journal of Molecular Liquids, 2017, 340, 108152.	2.3	0
58	Organic Light-Emitting Diodes. , 2017, , 473-522.		4
59	Research Update: Computational materials discovery in soft matter. APL Materials, 2016, 4, .	2.2	34
60	Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics. Journal of Physics Condensed Matter, 2016, 28, 433002.	0.7	131
61	Finite-size scaling of charge carrier mobility in disordered organic semiconductors. Physical Review B, 2016, 94, .	1.1	18
62	Long-Range Embedding of Molecular Ions and Excitations in a Polarizable Molecular Environment. Journal of Chemical Theory and Computation, 2016, 12, 4516-4523.	2.3	46
63	Comparison of systematic coarse-graining strategies for soluble conjugated polymers. European Physical Journal: Special Topics, 2016, 225, 1441-1461.	1.2	17
64	Band structure engineering in organic semiconductors. Science, 2016, 352, 1446-1449.	6.0	239
65	Modeling of Spatially Correlated Energetic Disorder in Organic Semiconductors. Journal of Chemical Theory and Computation, 2016, 12, 36-40.	2.3	34
66	Molecular scale simulation of hole mobility and current densities in amorphous tridecane. , 2015, , .		9
67	Transferable Atomic Multipole Machine Learning Models for Small Organic Molecules. Journal of Chemical Theory and Computation, 2015, 11, 3225-3233.	2.3	91
68	Modeling of Organic Light Emitting Diodes: From Molecular to Device Properties. Advanced Functional Materials, 2015, 25, 1955-1971.	7.8	135
69	Sub-ns triplet state formation by non-geminate recombination in PSBTBT:PC ₇₀ BM and PCPDTBT:PC ₆₀ BM organic solar cells. Energy and Environmental Science, 2015, 8, 1511-1522.	15.6	67
70	Effect of Mesoscale Ordering on the Density of States of Polymeric Semiconductors. Macromolecular Rapid Communications, 2015, 36, 1047-1053.	2.0	35
71	Parameter-free continuous drift–diffusion models of amorphous organic semiconductors. Physical Chemistry Chemical Physics, 2015, 17, 22778-22783.	1.3	19
72	Design Rules for Organic Donor–Acceptor Heterojunctions: Pathway for Charge Splitting and Detrapping. Journal of the American Chemical Society, 2015, 137, 6320-6326.	6.6	97

#	Article	IF	CITATIONS
73	Charge Carrier Transport and Photogeneration in P3HT:PCBM Photovoltaic Blends. Macromolecular Rapid Communications, 2015, 36, 1001-1025.	2.0	80
74	Impact of mesoscale order on open-circuit voltage in organic solar cells. Nature Materials, 2015, 14, 434-439.	13.3	184
75	Morphology and Charge Transport in P3HT: A Theorist's Perspective. Advances in Polymer Science, 2014, , 139-180.	0.4	61
76	Simulations of Morphology and Charge Transport in Supramolecular Organic Materials. RSC Smart Materials, 2014, , 309-362.	0.1	4
77	Efficient Simulation of Markov Chains Using Segmentation. Methodology and Computing in Applied Probability, 2014, 16, 465-484.	0.7	11
78	Two Channels of Charge Generation in Perylene Monoimide Solid‧tate Dye‧ensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1300640.	10.2	18
79	A General Framework for Consistent Estimation of Charge Transport Properties via Random Walks in Random Environments. Multiscale Modeling and Simulation, 2014, 12, 1108-1134.	0.6	13
80	Electronic Excitations in Push–Pull Oligomers and Their Complexes with Fullerene from Many-Body Green's Functions Theory with Polarizable Embedding. Journal of Chemical Theory and Computation, 2014, 10, 3104-3110.	2.3	55
81	Parametrization of Extended Gaussian Disorder Models from Microscopic Charge Transport Simulations. Journal of Chemical Theory and Computation, 2014, 10, 2508-2513.	2.3	27
82	Nematic Ordering, Conjugation, and Density of States of Soluble Polymeric Semiconductors. Macromolecules, 2013, 46, 5762-5774.	2.2	56
83	Observing Charge Dynamics in Surface Reactions by Time-Resolved Stark Effects. Journal of Physical Chemistry C, 2013, 117, 9171-9177.	1.5	14
84	Effect of Polymorphism, Regioregularity and Paracrystallinity on Charge Transport in Poly(3-hexylthiophene) [P3HT] Nanofibers. Macromolecules, 2013, 46, 8941-8956.	2.2	130
85	Characterization of Charge-Carrier Transport in Semicrystalline Polymers: Electronic Couplings, Site Energies, and Charge-Carrier Dynamics in Poly(bithiophene-alt-thienothiophene) [PBTTT]. Journal of Physical Chemistry C, 2013, 117, 1633-1640.	1.5	92
86	Molecular ordering and charge transport in a dicyanovinyl-substituted quaterthiophene thin film. RSC Advances, 2013, 3, 12117.	1.7	20
87	Water-Free Proton Conduction in Hexakis(<i>p</i> -Phosphonatophenyl)benzene Nanochannels. Journal of Physical Chemistry C, 2013, 117, 12366-12372.	1.5	16
88	Structure-based coarse-graining in liquid slabs. Journal of Chemical Physics, 2012, 137, 064102.	1.2	41
89	Design Rules for Charge-Transport Efficient Host Materials for Phosphorescent Organic Light-Emitting Diodes. Journal of the American Chemical Society, 2012, 134, 13818-13822.	6.6	85
90	Challenges for in silico design of organic semiconductors. Journal of Materials Chemistry, 2012, 22, 10971.	6.7	57

#	Article	IF	CITATIONS
91	Stochastic modeling of molecular charge transport networks. Physical Review B, 2012, 86, .	1.1	48
92	Charge transport in amorphous and smectic mesophases of dicyanovinyl-substituted oligothiophenes. Journal of Materials Chemistry, 2012, 22, 22258.	6.7	40
93	Can Lattice Models Predict the Density of States of Amorphous Organic Semiconductors?. Physical Review Letters, 2012, 109, 136401.	2.9	55
94	Comparative Study of Microscopic Charge Dynamics in Crystalline Acceptor-Substituted Oligothiophenes. Journal of the American Chemical Society, 2012, 134, 6052-6056.	6.6	78
95	Frenkel and Charge-Transfer Excitations in Donor–acceptor Complexes from Many-Body Green's Functions Theory. Journal of Chemical Theory and Computation, 2012, 8, 2790-2795.	2.3	98
96	Excited States of Dicyanovinyl-Substituted Oligothiophenes from Many-Body Green's Functions Theory. Journal of Chemical Theory and Computation, 2012, 8, 997-1002.	2.3	86
97	Bilayer order in a polycarbazole-conjugated polymer. Nature Communications, 2012, 3, 795.	5.8	100
98	Toward Quantitative Structure–Property Relationships for Charge Transfer Rates of Polycyclic Aromatic Hydrocarbons. Journal of Chemical Theory and Computation, 2011, 7, 2549-2555.	2.3	37
99	Relationship between supramolecular assembly and charge-carrier mobility in perylenediimide derivatives: The impact of side chains. Journal of Materials Chemistry, 2011, 21, 9538.	6.7	60
100	Microscopic Simulations of Charge Transport in Disordered Organic Semiconductors. Journal of Chemical Theory and Computation, 2011, 7, 3335-3345.	2.3	345
101	Extracting nondispersive charge carrier mobilities of organic semiconductors from simulations of small systems. Physical Review B, 2010, 82, .	1.1	58
102	Charge transport in columnar mesophases of carbazole macrocycles. Journal of Chemical Physics, 2010, 133, 134901.	1.2	16
103	Density-functional based determination of intermolecular charge transfer properties for large-scale morphologies. Physical Chemistry Chemical Physics, 2010, 12, 11103.	1.3	222
104	Charge Transport in Self-Assembled Semiconducting Organic Layers: Role of Dynamic and Static Disorder. Journal of Physical Chemistry C, 2010, 114, 10592-10597.	1.5	44
105	A multiscale description of charge transport in conjugated oligomers. Journal of Chemical Physics, 2010, 132, 134103.	1.2	76
106	Charge Transport in Organic Crystals: Role of Disorder and Topological Connectivity. Journal of the American Chemical Society, 2010, 132, 11702-11708.	6.6	157
107	Solvated poly-(phenylene vinylene) derivatives: conformational structure and aggregation behavior. Journal of Materials Chemistry, 2010, 20, 10475.	6.7	22
108	Amorphous films of tris(8â€hydroxyquinolinato)aluminium: Forceâ€field, morphology, and charge transport. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2737-2742.	0.8	43

#	Article	IF	CITATIONS
109	Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nature Materials, 2009, 8, 421-426.	13.3	555
110	Understanding Structureâ ´`Mobility Relations for Perylene Tetracarboxydiimide Derivatives. Journal of the American Chemical Society, 2009, 131, 11426-11432.	6.6	86
111	Charge Transport in Semiconductors with Multiscale Conformational Dynamics. Physical Review Letters, 2009, 102, 116602.	2.9	111
112	Graphitic Nanoribbons with Dibenzo[<i>e,l</i>]pyrene Repeat Units: Synthesis and Self-Assembly. Macromolecules, 2009, 42, 6878-6884.	2.2	81
113	Versatile Object-Oriented Toolkit for Coarse-Graining Applications. Journal of Chemical Theory and Computation, 2009, 5, 3211-3223.	2.3	390
114	Structure–charge mobility relation for hexabenzocoronene derivatives. Physica Status Solidi (B): Basic Research, 2008, 245, 830-834.	0.7	44
115	Supramolecular structure of perylene tetracarboxdiimides. Physica Status Solidi (B): Basic Research, 2008, 245, 820-824.	0.7	34
116	Coarseâ€grained modelling of polypyrrole morphologies. Physica Status Solidi (B): Basic Research, 2008, 245, 844-848.	0.7	15
117	Atomistic force field and electronic properties of carbazole: from monomer to macrocycle. Physica Status Solidi (B): Basic Research, 2008, 245, 839-843.	0.7	6
118	Charge transport parameters of HBC at different temperatures. Physica Status Solidi (B): Basic Research, 2008, 245, 835-838.	0.7	16
119	Columnar mesophases of hexabenzocoronene derivatives. I. Phase transitions. Journal of Chemical Physics, 2008, 129, 094505.	1.2	40
120	Columnar mesophases of hexabenzocoronene derivatives. II. Charge carrier mobility. Journal of Chemical Physics, 2008, 129, 094506.	1.2	64
121	Tuning electronic eigenvalues of benzene via doping. Journal of Chemical Physics, 2007, 127, 064305.	1.2	30
122	Charge Mobility of Discotic Mesophases: A Multiscale Quantum and Classical Study. Physical Review Letters, 2007, 98, 227402.	2.9	172
123	Electron-Deficient N-Heteroaromatic Linkers for the Elaboration of Large, Soluble Polycyclic Aromatic Hydrocarbons and Their Use in the Synthesis of Some Very Large Transition Metal Complexes. Journal of the American Chemical Society, 2007, 129, 11743-11749.	6.6	107
124	Atomistic simulation of structure and dynamics of columnar phases of hexabenzocoronene derivatives. Journal of Chemical Physics, 2006, 125, 124902.	1.2	70
125	Coarse-grained interaction potentials for polyaromatic hydrocarbons. Journal of Chemical Physics, 2006, 124, 054307.	1.2	47
126	Colloidal particles at a nematic-isotropic interface: Effects of confinement. European Physical Journal E, 2006, 20, 237-242.	0.7	17

#	Article	IF	CITATIONS
127	Effective triplet interactions in nematic colloids. European Physical Journal E, 2006, 21, 277-282.	0.7	8
128	Dynamic surface decoupling in a sheared polymer melt. Europhysics Letters, 2005, 70, 264-270.	0.7	17
129	Flow boundary conditions for chain-end adsorbing polymer blends. Journal of Chemical Physics, 2005, 123, 104904.	1.2	12
130	Effective pair interactions between colloidal particles at a nematic-isotropic interface. Europhysics Letters, 2005, 70, 95-101.	0.7	20
131	Adhesion of Polycarbonate Blends on a Nickel Surface. Macromolecules, 2005, 38, 5810-5816.	2.2	19
132	Twist-bend instability for toroidal DNA condensates. Europhysics Letters, 2004, 67, 418-424.	0.7	40
133	Capillary bridging and long-range attractive forces in a mean-field approach. Journal of Chemical Physics, 2004, 121, 4414-4423.	1.2	57
134	Drag of Micro-Particles by an Extended Nematic-Isotropic Interface. Molecular Crystals and Liquid Crystals, 2004, 422, 73-82.	0.4	4
135	Elasticity of polyelectrolyte multilayer microcapsules. Journal of Chemical Physics, 2004, 120, 3822-3826.	1.2	117
136	Mechanism of Formation of Three Dimensional Structures of Particles in a Liquid Crystal. Molecular Crystals and Liquid Crystals, 2004, 410, 83-93.	0.4	5
137	Young's Modulus of Polyelectrolyte Multilayers from Microcapsule Swelling. Macromolecules, 2004, 37, 1113-1117.	2.2	94
138	Interaction of colloids with a nematic-isotropic interface. Physical Review E, 2004, 69, 021706.	0.8	33
139	Boundary slip as a result of a prewetting transition. Journal of Chemical Physics, 2003, 119, 13106-13112.	1.2	65
140	Forces between elongated particles in a nematic colloid. Physical Review E, 2003, 68, 051702.	0.8	42
141	Theory and simulation of the nematic zenithal anchoring coefficient. Physical Review E, 2002, 65, 021704.	0.8	17
142	Drag on particles in a nematic suspension by a moving nematic-isotropic interface. Physical Review E, 2002, 66, 012702.	0.8	64
143	Entropic Torque. Physical Review Letters, 2002, 89, 088301.	2.9	62
144	Defect structures and torque on an elongated colloidal particle immersed in a liquid crystal host. Physical Review E, 2002, 65, 041702.	0.8	81

#	Article	IF	CITATIONS
145	Computer simulation of topological defects around a colloidal particle or droplet dispersed in a nematic host. Physical Review E, 2001, 63, 041701.	0.8	86
146	Electrically controlled director slippage over a photosensitive aligning surface; in-plane sliding mode. Liquid Crystals, 2000, 27, 365-370.	0.9	18
147	Control of the Anchoring Energy of Rubbed Polyimide Layers by Irradiation with Depolarized UV-Light. Japanese Journal of Applied Physics, 2000, 39, 1217-1220.	0.8	29
148	Liquid crystal director fluctuations and surface anchoring by molecular simulation. Physical Review E, 2000, 62, 6688-6693.	0.8	20
149	Molecular simulation and theory of a liquid crystalline disclination core. Physical Review E, 2000, 61, 504-510.	0.8	28
150	Light-Induced Surface Sliding of the Nematic Director in Liquid Crystals. Physical Review Letters, 1999, 82, 1855-1858.	2.9	83
151	Tilted photoalignment of a nematic liquid crystal induced by a magnetic field. Journal of Applied Physics, 1998, 83, 50-55.	1.1	28
152	Light-induced Freedericksz transition in a nematic liquid crystal with chiral dopant. Liquid Crystals, 1998, 25, 95-100.	0.9	2
153	Measurement of Azimuthal Anchoring Energy of Nematic Liquid Crystal on Photoaligning Polymer Surface. Molecular Crystals and Liquid Crystals, 1998, 321, 271-281.	0.3	30
154	Ultrafast Energy Transfer Triggers Ionization Energy Offset Dependence of Quantum Efficiency in Low-bandgap Non-fullerene Acceptor Solar Cells. , 0, , .		0
155	Non-geminate Recombination Limits Fill Factor in Polymer:ITIC Bulk Heterojunction Solar Cells. , 0, , .		0
156	An Energetic Perspective to Improve the Photostability of Non-Fullerene Acceptor based Organic PhotoVoltaics. , 0, , .		0