Vincent L Pecoraro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3133050/publications.pdf Version: 2024-02-01

		5268	14208
306	21,143	83	128
papers	citations	h-index	g-index
343	343	343	10011
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis, Structure, and Magnetic Properties of a Large Lanthanide–Transition-Metal Single-Molecule Magnet. Angewandte Chemie - International Edition, 2004, 43, 3912-3914.	13.8	522
2	Structural and Functional Evolution of Metallacrowns. Chemical Reviews, 2007, 107, 4933-5003.	47.7	466
3	Structural, Spectroscopic, and Reactivity Models for the Manganese Catalases. Chemical Reviews, 2004, 104, 903-938.	47.7	440
4	Protein Design: Toward Functional Metalloenzymes. Chemical Reviews, 2014, 114, 3495-3578.	47.7	379
5	Interaction of Manganese with Dioxygen and Its Reduced Derivatives. Chemical Reviews, 1994, 94, 807-826.	47.7	375
6	55Mn ENDOR of the S2-State Multiline EPR Signal of Photosystem II:Â Implications on the Structure of the Tetranuclear Mn Cluster. Journal of the American Chemical Society, 2000, 122, 10926-10942.	13.7	375
7	Functional Models for Vanadium Haloperoxidase:  Reactivity and Mechanism of Halide Oxidation. Journal of the American Chemical Society, 1996, 118, 3469-3478.	13.7	328
8	Reflections on small molecule manganese models that seek to mimic photosynthetic water oxidation chemistry. Coordination Chemistry Reviews, 2008, 252, 416-443.	18.8	326
9	A proposal for water oxidation in photosystem II. Pure and Applied Chemistry, 1998, 70, 925-929.	1.9	321
10	Thermodynamic binding constants for gallium transferrin. Biochemistry, 1983, 22, 292-299.	2.5	318
11	Stability constants of magnesium and cadmium complexes of adenine nucleotides and thionucleotides and rate constants for formation and dissociation of magnesium-ATP and magnesium-ADP. Biochemistry, 1984, 23, 5262-5271.	2.5	318
12	Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nature Chemistry, 2012, 4, 118-123.	13.6	293
13	Paramagnetic spectroscopy of vanadyl complexes and its applications to biological systems. Coordination Chemistry Reviews, 2002, 228, 1-18.	18.8	261
14	Isolation and characterization of {MnII[MnIII(salicylhydroximate)]4(acetate)2(DMF)6}.cntdot.2DMF: an inorganic analog of M2+(12-crown-4). Journal of the American Chemical Society, 1989, 111, 7258-7259.	13.7	256
15	The peroxide-dependent .mu.2-O bond formation of manganese complex [Mn(IV)SALPN(O)]2. Journal of the American Chemical Society, 1991, 113, 3810-3818.	13.7	196
16	The development of chiral metallacrowns into anion recognition agents and porous materials. Coordination Chemistry Reviews, 2001, 216-217, 489-512.	18.8	191
17	The Electronic Structure of Mn in Oxides, Coordination Complexes, and the Oxygen-Evolving Complex of Photosystem II Studied by Resonant Inelastic X-ray Scattering. Journal of the American Chemical Society, 2004, 126, 9946-9959.	13.7	177
18	Manganese Redox Enzymes and Model Systems: Properties, Structures, and Reactivity. Advances in Inorganic Chemistry, 1998, , 305-440.	1.0	174

#	Article	IF	CITATIONS
19	The Preparation, Characterization, and Magnetism of Copper 15-Metallacrown-5 Lanthanide Complexes. Inorganic Chemistry, 1999, 38, 2807-2817.	4.0	174
20	Structural characterization of the manganese sites in the photosynthetic oxygen-evolving complex using x-ray absorption spectroscopy. Journal of the American Chemical Society, 1990, 112, 2549-2557.	13.7	173
21	Ga ³⁺ /Ln ³⁺ Metallacrowns: A Promising Family of Highly Luminescent Lanthanide Complexes That Covers Visible and Near-Infrared Domains. Journal of the American Chemical Society, 2016, 138, 5100-5109.	13.7	170
22	Assembly of Nearâ€Infrared Luminescent Lanthanide Host(Host–Guest) Complexes With a Metallacrown Sandwich Motif. Angewandte Chemie - International Edition, 2011, 50, 9660-9664.	13.8	161
23	Highly Emitting Near-Infrared Lanthanide "Encapsulated Sandwich―Metallacrown Complexes with Excitation Shifted Toward Lower Energy. Journal of the American Chemical Society, 2014, 136, 1526-1534.	13.7	161
24	De NovoDesign of Mercury-Binding Two- and Three-Helical Bundles. Journal of the American Chemical Society, 1997, 119, 6195-6196.	13.7	157
25	Preparation of Highly Efficient Manganese Catalase Mimicsâ€−. Inorganic Chemistry, 2002, 41, 5544-5554.	4.0	153
26	Implications for the spectroscopic assignment of vanadium biomolecules: structural and spectroscopic characterization of monooxovanadium(V) complexes containing catecholate and hydroximate based noninnocent ligands. Journal of the American Chemical Society, 1992, 114, 9925-9933.	13.7	151
27	Monomeric and dimeric vanadium(IV) and -(V) complexes of N-(hydroxyalkyl)salicylideneamines: structures, magnetochemistry and reactivity. Inorganic Chemistry, 1990, 29, 944-951.	4.0	146
28	Structurally diverse manganese(III) Schiff base complexes: chains, dimers, and cages. Inorganic Chemistry, 1989, 28, 2037-2044.	4.0	143
29	Assessing the Slow Magnetic Relaxation Behavior of LnIII4MnIII6Metallacrowns. Inorganic Chemistry, 2007, 46, 1954-1956.	4.0	139
30	Copper(II) 12-Metallacrown-4: Synthesis, Structure, Ligand Variability, and Solution Dynamics in the 12-MC-4 Structural Motif. Inorganic Chemistry, 1994, 33, 4840-4849.	4.0	138
31	Recent advances in the understanding of the biological chemistry of manganese. Current Opinion in Chemical Biology, 1999, 3, 182-187.	6.1	136
32	Oxidation of Organic Sulfides by Vanadium Haloperoxidase Model Complexes. Inorganic Chemistry, 2002, 41, 6754-6760.	4.0	136
33	Structural characterization of [VO(salicylhydroximate)(CH3OH)]3: Applications to the biological chemistry of vanadium(V). Inorganica Chimica Acta, 1989, 155, 171-173.	2.4	135
34	Chiral 15-Metallacrown-5 Complexes Differentially Bind Carboxylate Anions. Journal of the American Chemical Society, 2001, 123, 6211-6212.	13.7	132
35	Structural and Magnetic Effects of Successive Protonations of Oxo Bridges in High-Valent Manganese Dimers. Journal of the American Chemical Society, 1994, 116, 11349-11356.	13.7	130
36	Comparison of the Binding of Cadmium(II), Mercury(II), and Arsenic(III) to the de Novo Designed Peptides TRI L12C and TRI L16C. Journal of the American Chemical Society, 2002, 124, 8042-8054.	13.7	129

#	Article	IF	CITATIONS
37	Designing Hydrolytic Zinc Metalloenzymes. Biochemistry, 2014, 53, 957-978.	2.5	126
38	Manganese-manganese separations in oxide- and alkoxide-bridged complexes: correlation of structure with ligand type and number. Inorganic Chemistry, 1992, 31, 373-378.	4.0	122
39	Using LnIII[15-MCCuII(N)(S)-pheHA-5]3+ Complexes To Construct Chiral Single-Molecule Magnets and Chains of Single-Molecule Magnets. Inorganic Chemistry, 2006, 45, 10022-10024.	4.0	122
40	The role of protonation and metal chelation preferences in defining the properties of mercury-binding coiled coils 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 280, 897-912.	4.2	121
41	Synthesis and Magnetic Properties of a Metallacryptate that Behaves as a Single-Molecule Magnet. Angewandte Chemie - International Edition, 2003, 42, 3763-3766.	13.8	121
42	Metallacrowns: A New Class of Molecular Recognition Agents. Progress in Inorganic Chemistry, 0, , 83-177.	3.0	121
43	Structural and Solution Characterization of Mononuclear Vanadium(IV) Complexes That Help To Elucidate the Active Site Structure of the Reduced Vanadium Haloperoxidases. Inorganic Chemistry, 1997, 36, 4866-4874.	4.0	120
44	Mononuclear manganese(IV) complexes of hydroxyl-rich Schiff base ligands. Inorganic Chemistry, 1987, 26, 2487-2492.	4.0	119
45	Energetics of Proton-Coupled Electron Transfer in High-Valent Mn2(μ-O)2Systems: Models for Water Oxidation by the Oxygen-Evolving Complex of Photosystem II. Journal of the American Chemical Society, 1996, 118, 11325-11326.	13.7	119
46	Reactivity of Dioxovanadium(V) Complexes with Hydrogen Peroxide:Â Implications for Vanadium Haloperoxidase. Inorganic Chemistry, 1998, 37, 949-955.	4.0	119
47	Reevaluation of the Additivity Relationship for Vanadylâ^'Imidazole Complexes:  Correlation of the EPR Hyperfine Constant with Ring Orientation. Journal of the American Chemical Society, 2000, 122, 767-775.	13.7	118
48	A Model for the Inhibition of Urease by Hydroxamates. Journal of the American Chemical Society, 1995, 117, 6368-6369.	13.7	117
49	Catalytic Oxidation of 3,5-Di-tert-butylcatechol by a Series of Mononuclear Manganese Complexes:Â Synthesis, Structure, and Kinetic Investigation. Inorganic Chemistry, 2003, 42, 6274-6283.	4.0	117
50	A functional model for vanadium haloperoxidase. Journal of the American Chemical Society, 1994, 116, 3627-3628.	13.7	114
51	Assessing the exchange coupling in binuclear lanthanide(<scp>iii</scp>) complexes and the slow relaxation of the magnetization in the antiferromagnetically coupled Dy ₂ derivative. Chemical Science, 2015, 6, 4148-4159.	7.4	114
52	Novel reactivity patterns of (N,N'-ethylenebis(salicylideneaminato))oxovanadium(IV) in strongly acidic media. Inorganic Chemistry, 1987, 26, 1218-1222.	4.0	113
53	Vanadium complexes of the tridentate Schiff base ligand N-salicylidene-N'-(2-hydroxyethyl)ethylenediamine: acid-base and redox conversion between vanadium(IV) and vanadium(V) imino phenolates. Inorganic Chemistry, 1988, 27, 4657-4664.	4.0	113
54	Structural and spectroscopic characterization of dioxovanadium(V) complexes with asymmetric Schiff base ligands. Inorganic Chemistry, 1993, 32, 3855-3861.	4.0	112

#	Article	IF	CITATIONS
55	Lanthanide [15]Metallacrown-5 Complexes Form Nitrate-Selective Chiral Cavities. Angewandte Chemie - International Edition, 2000, 39, 2689-2692.	13.8	112
56	Modeling vanadium bromoperoxidase: synthesis, structure, and spectral properties of vanadium(IV) complexes with coordinated imidazole. Inorganic Chemistry, 1992, 31, 2035-2043.	4.0	110
57	Designing functional metalloproteins: From structural to catalytic metal sites. Coordination Chemistry Reviews, 2013, 257, 2565-2588.	18.8	109
58	Near-Infrared Optical Imaging of Necrotic Cells by Photostable Lanthanide-Based Metallacrowns. Journal of the American Chemical Society, 2017, 139, 8388-8391.	13.7	109
59	Copper-induced expression, cloning, and regulatory studies of the plastocyanin gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Molecular Biology, 1990, 15, 633-642.	3.9	108
60	Facile Preparation of Face Differentiated, Chiral 15-Metallacrown-5 Complexes. Journal of the American Chemical Society, 1996, 118, 11962-11963.	13.7	108
61	Preparation of a Chiral, 2-Dimensional Network Containing Metallacrown and Copper Benzoate Building Blocks. Inorganic Chemistry, 2000, 39, 3434-3435.	4.0	108
62	Metallacryptate Single-Molecule Magnets:Â Effect of Lower Molecular Symmetry on Blocking Temperature. Journal of the American Chemical Society, 2005, 127, 12862-12872.	13.7	108
63	Catalytic disproportionation of hydrogen peroxide by manganese complex [Mn(IV)(.mu.2-O)(SALPN)]2. Journal of the American Chemical Society, 1991, 113, 7809-7810.	13.7	107
64	Preparation of Resolved Fourfold Symmetric Amphiphilic Helices Using Chiral Metallacrown Building Blocks. Angewandte Chemie - International Edition, 2002, 41, 4667-4670.	13.8	107
65	Reactivity of Peroxo Forms of the Vanadium Haloperoxidase Cofactor. A DFT Investigation. Journal of the American Chemical Society, 2005, 127, 953-960.	13.7	107
66	[Mn(III)(2-OHsalpn)]2 is an efficient functional model for the manganese catalases. Journal of the American Chemical Society, 1993, 115, 7928-7929.	13.7	106
67	Elucidating the Protonation Site of Vanadium Peroxide Complexes and the Implications for Biomimetic Catalysis. Journal of the American Chemical Society, 2008, 130, 2712-2713.	13.7	105
68	Siderophilin metal coordination. Difference ultraviolet spectroscopy of di-, tri-, and tetravalent metal ions with ethylenebis[(o-hydroxyphenyl)glycine]. Biochemistry, 1981, 20, 7033-7039.	2.5	104
69	Structural Evaluation and Solution Integrity of Alkali Metal Salt Complexes of the Manganese 12-Metallacrown-4 (12-MC-4) Structural Type. Inorganic Chemistry, 1996, 35, 6184-6193.	4.0	104
70	Characterization of mono- and binuclear manganese(II) Schiff base complexes with metal-disulfide ligation. Inorganic Chemistry, 1987, 26, 495-503.	4.0	102
71	Structurally diverse manganese(III) Schiff base complexes: solution speciation via paramagnetic proton NMR spectroscopy and electrochemistry. Inorganic Chemistry, 1989, 28, 2044-2051.	4.0	102
72	The [Mn2(2-OHsalpn)2]2-,-,0,+System:Â Synthesis, Structure, Spectroscopy, and Magnetism of the First Structurally Characterized Dinuclear Manganese Series Containing Four Distinct Oxidation States. Inorganic Chemistry, 1997, 36, 1829-1837.	4.0	102

#	Article	IF	CITATIONS
73	The [Mn2(2-OHsalpn)2]2-,1-,0System:Â An Efficient Functional Model for the Reactivity and Inactivation of the Manganese Catalases. Inorganic Chemistry, 1998, 37, 3301-3309.	4.0	101
74	A Mixed 3dâ^'4f 14-Metallacrown-5 Complex That Displays Slow Magnetic Relaxation through Geometric Control of Magnetoanisotropy. Inorganic Chemistry, 2010, 49, 9104-9106.	4.0	101
75	Designing a functional type 2 copper center that has nitrite reductase activity within α-helical coiled coils. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21234-21239.	7.1	101
76	Preparation of Site-Differentiated Mixed Ligand and Mixed Ligand/Mixed Metal Metallacrowns. Inorganic Chemistry, 2001, 40, 1562-1570.	4.0	100
77	X-ray crystallographic characterization of a stepwise, metal-assisted oxidative decarboxylation: vanadium complexes of ethylenebis[(o-hydroxyphenyl)glycine] and derivatives. Inorganic Chemistry, 1986, 25, 154-160.	4.0	96
78	A Planar[15]Metallacrown-5 That Selectively Binds the Uranyl Cation. Angewandte Chemie International Edition in English, 1996, 35, 2841-2843.	4.4	92
79	The tetranuclear cluster Fe III [Fe III (salicylhydroximato)(MeOH)(acetate)]3 is an analogue of M3+(9-crown-3). Journal of the Chemical Society Chemical Communications, 1989, , 1606.	2.0	91
80	Structural and magnetic characterization of trinuclear, mixed-valence manganese acetates. Inorganic Chemistry, 1992, 31, 5424-5432.	4.0	90
81	The fused metallacrown anion Na2{[Na0.5[Ga(salicylhydroximate)]4]2(.mu.2-OH)4}- is an inorganic analog of a cryptate. Journal of the American Chemical Society, 1993, 115, 5857-5858.	13.7	90
82	Thermodynamic Viability of Hydrogen Atom Transfer from Water Coordinated to the Oxygen-Evolving Complex of Photosystem II. Journal of the American Chemical Society, 1997, 119, 3415-3416.	13.7	90
83	Synthesis and Crystal Structure of the First Inverse 12-Metallacrown-4. Inorganic Chemistry, 1995, 34, 2271-2272.	4.0	86
84	Understanding Metalloprotein Folding Using a de Novo Design Strategy. Inorganic Chemistry, 2004, 43, 7902-7915.	4.0	85
85	Identifying important structural characteristics of arsenic resistance proteins by using designed three-stranded coiled coils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11969-11974.	7.1	85
86	The Preparation of VO3+ and VO2+ Complexes Using Hydrolytically Stable, Asymmetric Ligands Derived from Schiff Base Precursors. Inorganic Chemistry, 1994, 33, 4669-4675.	4.0	83
87	Generalizing the metallacrown analogy: ligand variation and solution stability of the VVO 9-metallacrown-3 structure type. Inorganic Chemistry, 1993, 32, 6008-6015.	4.0	82
88	Compositional and geometrical isomers of 15-metallacrowns-5 complexes. Polyhedron, 1994, 13, 1379-1391.	2.2	81
89	Peptidic models for the binding of Pb(II), Bi(III) and Cd(II) to mononuclear thiolate binding sites. Journal of Biological Inorganic Chemistry, 2006, 11, 876-890.	2.6	80
90	Influence of Active Site Location on Catalytic Activity in <i>de Novo</i> -Designed Zinc Metalloenzymes. Journal of the American Chemical Society, 2013, 135, 5895-5903.	13.7	78

#	Article	IF	CITATIONS
91	Modeling the biological chemistry of vanadium: Structural and reactivity studies elucidating biological function. Structure and Bonding, 1997, , 51-108.	1.0	77
92	Ternary Complexes of Gentamicin with Iron and Lipid Catalyze Formation of Reactive Oxygen Species. Chemical Research in Toxicology, 2005, 18, 357-364.	3.3	77
93	A functional analogy between crown ethers and metallacrowns. Inorganic Chemistry, 1991, 30, 878-880.	4.0	76
94	Manganese complexes of .alphahydroxy acids. Inorganic Chemistry, 1991, 30, 8-15.	4.0	76
95	Design of a Threeâ€Helix Bundle Capable of Binding Heavy Metals in a Triscysteine Environment. Angewandte Chemie - International Edition, 2011, 50, 2049-2053.	13.8	76
96	Siderophilin metal coordination. 1. Complexation of thorium by transferrin: structure-function implications. Journal of the American Chemical Society, 1981, 103, 2231-2237.	13.7	75
97	Arsenic(III)â^Cysteine Interactions Stabilize Three-Helix Bundles in Aqueous Solution. Inorganic Chemistry, 2000, 39, 5422-5423.	4.0	74
98	Development of Metallacrown Ethers: A New Class of Metal Clusters. Comments on Inorganic Chemistry, 1990, 11, 59-84.	5.2	71
99	ESE-ENDOR and ESEEM Characterization of Water and Methanol Ligation to a Dinuclear Mn(III)Mn(IV) Complexâ€. Journal of the American Chemical Society, 1997, 119, 4481-4491.	13.7	71
100	Insight into the Catalytic Mechanism of Vanadium Haloperoxidases. DFT Investigation of Vanadium Cofactor Reactivity. Inorganic Chemistry, 2006, 45, 7133-7143.	4.0	71
101	A Deâ€Novo Designed Metalloenzyme for the Hydration of CO ₂ . Angewandte Chemie - International Edition, 2014, 53, 7900-7903.	13.8	69
102	Probing metal–protein interactions using a de novo design approach. Current Opinion in Chemical Biology, 2005, 9, 97-103.	6.1	67
103	The Application of ¹⁹⁹ Hg NMR and ^{199m} Hg Perturbed Angular Correlation (PAC) Spectroscopy to Define the Biological Chemistry of Hg ^{II} : A Case Study with Designed Two―and Threeâ€5tranded Coiled Coils. Chemistry - A European Journal, 2007, 13, 9178-9190.	3.3	67
104	Isolation of a mixed-valence trinuclear manganese complex potentially relevant to the photosynthetic oxygen evolving complex. Inorganic Chemistry, 1988, 27, 1-3.	4.0	66
105	The First Binuclear Mn(IV) Complex Containing a Bridging Imidazolate Ligand Exhibits Unique EPR Spectral Features. Journal of the American Chemical Society, 1997, 119, 9297-9298.	13.7	65
106	A magneto-structural correlation between the Heisenberg constant, J, and the Mnî—,Oî—,Mn angle in [MnIV(μ-O)]2 dimers. Inorganica Chimica Acta, 2000, 297, 252-264.	2.4	65
107	Using Nonnatural Amino Acids to Control Metal-Coordination Number in Three-Stranded Coiled Coils. Angewandte Chemie - International Edition, 2006, 45, 2864-2868.	13.8	63
108	Mechanism for the Homolytic Cleavage of Alkyl Hydroperoxides by the Manganese(III) Dimer MnIII2(2-OHsalpn)2. Inorganic Chemistry, 1996, 35, 3577-3584.	4.0	62

#	Article	IF	CITATIONS
109	Using diastereopeptides to control metal ion coordination in proteins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16566-16571.	7.1	62
110	Experimental and Computational X-ray Emission Spectroscopy as a Direct Probe of Protonation States in Oxo-Bridged Mn ^{IV} Dimers Relevant to Redox-Active Metalloproteins. Inorganic Chemistry, 2013, 52, 12915-12922.	4.0	62
111	Thermodynamic Model for the Stabilization of Trigonal Thiolato Mercury(II) in Designed Three-Stranded Coiled Coilsâ€. Biochemistry, 2001, 40, 14696-14705.	2.5	61
112	XANES Evidence Against a Manganyl Species in the S3 State of the Oxygen-Evolving Complex. Journal of the American Chemical Society, 2004, 126, 8070-8071.	13.7	61
113	Tuning the Redox Properties of Manganese(II) and Its Implications to the Electrochemistry of Manganese and Iron Superoxide Dismutases. Inorganic Chemistry, 2008, 47, 2897-2908.	4.0	61
114	In Search of Elusive High-Valent Manganese Species That Evaluate Mechanisms of Photosynthetic Water Oxidation. Inorganic Chemistry, 2008, 47, 1765-1778.	4.0	61
115	Assessing the Dependence of ⁵¹ V <i>A</i> _{<i>z</i>} Value on the Aromatic Ring Orientation of V ^{IV} O ²⁺ Pyridine Complexes. Inorganic Chemistry, 2009, 48, 5790-5796.	4.0	60
116	Controllable Formation of Heterotrimetallic Coordination Compounds: Systematically Incorporating Lanthanide and Alkali Metal Ions into the Manganese 12-Metallacrown-4 Framework. Inorganic Chemistry, 2014, 53, 1729-1742.	4.0	60
117	A cationic 24-MC-8 manganese cluster with ring metals possessing three oxidation states [Mnll4Mnlll6MnlV2(μ4-O)2(μ3-O)4(μ3-OH)4(μ3-OCH3)2(pko)12](OH)(ClO4)3. Chemical Communications 2668-2669.	s, 20 03, ,	59
118	Gd(III)[15-Metallacrown-5] Recognition of Chiral α-Amino Acid Analogues. Inorganic Chemistry, 2011, 50, 4832-4841.	4.0	59
119	Influencing the Size and Anion Selectivity of Dimeric Ln ³⁺ [15-Metallacrown-5] Compartments through Systematic Variation of the Host Side Chains and Central Metal. Inorganic Chemistry, 2012, 51, 4527-4538.	4.0	59
120	Quantum Mechanical Models of the Resting State of the Vanadium-Dependent Haloperoxidase. Inorganic Chemistry, 2004, 43, 4127-4136.	4.0	58
121	Metallacrown-based compartments: selective encapsulation of three isonicotinate anions in non-centrosymmetric solids. Chemical Communications, 2007, , 1148.	4.1	58
122	Structural Comparisons of Apo- and Metalated Three-Stranded Coiled Coils Clarify Metal Binding Determinants in Thiolate Containing Designed Peptides. Journal of the American Chemical Society, 2010, 132, 13240-13250.	13.7	57
123	Electronic Structural Changes of Mn in the Oxygen-Evolving Complex of Photosystem II during the Catalytic Cycle. Inorganic Chemistry, 2013, 52, 5642-5644.	4.0	57
124	Isolation of the first ferromagnetically coupled Mn(iii/iv) complexElectronic supplementary information (ESI) available: Figures S1–S4. See http://www.rsc.org/suppdata/cc/b2/b212684m/. Chemical Communications, 2003, , 824-825.	4.1	56
125	Single Molecule Magnet Behavior of a Pentanuclear Mn-Based Metallacrown Complex: Solid State and Solution Magnetic Studies. Inorganic Chemistry, 2011, 50, 11348-11352.	4.0	56
126	Pseudohalide complexation by manganese 12-metallacrowns-4 complexes. Inorganica Chimica Acta, 2002, 331, 73-80.	2.4	55

8

#	Article	IF	CITATIONS
127	Models for the Lower S States of Photosystem II:Â A Trinuclear Mixed-Valent MnII/MnIV/MnIIComplex. Inorganic Chemistry, 2003, 42, 2185-2187.	4.0	55
128	Hg(II) binding to a weakly associated coiled coil nucleates an encoded metalloprotein fold: A kinetic analysis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3760-3765.	7.1	55
129	Linear Free-Energy Analysis of Mercury(II) and Cadmium(II) Binding to Three-Stranded Coiled Coilsâ€. Biochemistry, 2005, 44, 10732-10740.	2.5	55
130	The Preparation of a Double Metallahelicate Containing 28 Copper Atoms. Angewandte Chemie - International Edition, 2003, 42, 546-549.	13.8	53
131	Quantum Mechanics/Molecular Mechanics Calculations of the Vanadium Dependent Chloroperoxidase. Journal of Chemical Theory and Computation, 2005, 1, 1265-1274.	5.3	53
132	Solvent effects on 51V NMR chemical shifts: characterization of vanadate and peroxovanadate complexes in mixed water/acetonitrile solvent. Inorganica Chimica Acta, 1998, 283, 37-43.	2.4	52
133	Control of Metal Coordination Number in de Novo Designed Peptides through Subtle Sequence Modifications. Journal of the American Chemical Society, 2004, 126, 9178-9179.	13.7	52
134	Voltammetric Characterization of Redoxâ€nactive Guest Binding to Ln ^{III} [15â€Metallacrownâ€5] Hosts Based on Competition with a Redox Probe. Chemistry - A European Journal, 2010, 16, 6786-6796.	3.3	52
135	<i>De Novo</i> Protein Design as a Methodology for Synthetic Bioinorganic Chemistry. Accounts of Chemical Research, 2015, 48, 2388-2396.	15.6	51
136	The effect of protonation on [Mn(IV)(?2-O)]2 complexes. Photosynthesis Research, 1993, 38, 303-308.	2.9	50
137	Catalytic Disproportionation of Hydrogen Peroxide by the Tetranuclear Manganese Complex [Mnll(2-OHpicpn)]4. Inorganic Chemistry, 1996, 35, 1419-1420.	4.0	50
138	Site-Selective Metal Binding by Designed α-Helical Peptides. Journal of the American Chemical Society, 2005, 127, 18229-18233.	13.7	50
139	Harnessing natures ability to control metal ion coordination geometry using de novo designed peptides. Dalton Transactions, 2009, , 2271.	3.3	50
140	Chiral Metallacrown Supramolecular Compartments that Template Nanochannels: Selfâ€Assembly and Guest Absorption. Chemistry - an Asian Journal, 2010, 5, 46-49.	3.3	50
141	Structural and spectroscopic characterization of vanadium(V)-oxoimidazole complexes. Inorganic Chemistry, 1992, 31, 1981-1983.	4.0	49
142	Structural and Magnetic Studies of Manganese(II) Complexes of the Imidazole-Containing Ligand 5-NO2-salimH [5-NO2-salimH2 = 4-(2-((5-nitrosalicylidene)amino)ethyl)imidazole] with Varying Nuclearity. Inorganic Chemistry, 1995, 34, 5252-5260.	4.0	49
143	Heterochromia in Designed Metallopeptides: Geometry-Selective Binding of Cdll in a Deâ€Novo Peptide. Angewandte Chemie - International Edition, 2007, 46, 6688-6691.	13.8	49
144	Thermodynamics of Core Metal Replacement and Self-Assembly of Ca ²⁺ 15-Metallacrown-5. Inorganic Chemistry, 2010, 49, 5190-5201.	4.0	49

#	Article	IF	CITATIONS
145	De Novo-Designed Metallopeptides with Type 2 Copper Centers: Modulation of Reduction Potentials and Nitrite Reductase Activities. Journal of the American Chemical Society, 2013, 135, 18096-18107.	13.7	49
146	The 199Hg Chemical Shift as a Probe of Coordination Environments in Blue Copper Proteins. Inorganic Chemistry, 1995, 34, 2497-2498.	4.0	48
147	The Protonation States of Oxo-Bridged Mn ^{IV} Dimers Resolved by Experimental and Computational Mn K Pre-Edge X-ray Absorption Spectroscopy. Inorganic Chemistry, 2013, 52, 12904-12914.	4.0	48
148	Multinuclear Fe(III) Complexes with Polydentate Ligands of the Family of Dicarboxyimidazoles: Nuclearity- and Topology-Controlled Syntheses and Magneto-Structural Correlations. Inorganic Chemistry, 2005, 44, 3626-3635.	4.0	47
149	One‣tep Assembly of Visible and Nearâ€Infrared Emitting Metallacrown Dimers Using a Bifunctional Linker. Chemistry - A European Journal, 2018, 24, 1031-1035.	3.3	47
150	Ferric ion-specific sequestering agents. 7. Synthesis, iron-exchange kinetics, and stability constants of N-substituted, sulfonated catechoylamide analogs of enterobactin. Journal of the American Chemical Society, 1981, 103, 5133-5140.	13.7	46
151	Effects of the Central Lanthanide Ion Crystal Radius on the 15-MC _{Cu^{II}(N)pheHA} -5 Structure. Inorganic Chemistry, 2011, 50, 7707-7717.	4.0	46
152	Protonation of [{MnIV(saltn)(µ-O)}2] results in significant modification of structure and catalase-like reactivity. Journal of the Chemical Society Chemical Communications, 1992, , 102-103.	2.0	45
153	Establishing the Binding Affinity of Organic Carboxylates to 15-Metallacrown-5 Complexes. Inorganic Chemistry, 2009, 48, 5224-5233.	4.0	45
154	Solvent Dependent Assembly of Lanthanide Metallacrowns Using Building Blocks with Incompatible Symmetry Preferences. Inorganic Chemistry, 2014, 53, 7534-7546.	4.0	45
155	Understanding Spin Structure in Metallacrown Single-Molecule Magnets using Magnetic Compton Scattering. Journal of the American Chemical Society, 2014, 136, 4889-4892.	13.7	45
156	The Nature of the Bridging Anion Controls the Single-Molecule Magnetic Properties of DyX ₄ M 12-Metallacrown-4 Complexes. Inorganic Chemistry, 2016, 55, 10597-10607.	4.0	45
157	Artificial metalloenzymes derived from three-helix bundles. Current Opinion in Chemical Biology, 2015, 25, 65-70.	6.1	44
158	Preparation and Characterization of Chiral Copper 12-Metallacrown-4 Complexes, Inorganic Analogues of Tetraphenylporphyrinatocopper(II). Inorganic Chemistry, 1998, 37, 5416-5417.	4.0	43
159	Controlling and Fine Tuning the Physical Properties of Two Identical Metal Coordination Sites in De Novo Designed Three Stranded Coiled Coil Peptides. Journal of the American Chemical Society, 2011, 133, 239-251.	13.7	43
160	Coordination chemistry of microbial iron transport compounds. 23. Fourier transform infrared spectroscopy of ferric catechoylamide analogues of enterobactin. Journal of the American Chemical Society, 1983, 105, 4623-4633.	13.7	42
161	Formation of Chiral Solids via a Molecular Building Block Approach. Journal of Solid State Chemistry, 2000, 152, 68-77.	2.9	42
162	Assessing the Integrity of Designed Homomeric Parallel Three-Stranded Coiled Coils in the Presence of Metal Ions. Inorganic Chemistry, 2006, 45, 9959-9973.	4.0	42

#	Article	IF	CITATIONS
163	Pulse Electron Paramagnetic Resonance Studies of the Interaction of Methanol with the S ₂ State of the Mn ₄ O ₅ Ca Cluster of Photosystem II. Biochemistry, 2014, 53, 7914-7928.	2.5	42
164	Near-infrared luminescent metallacrowns for combined in vitro cell fixation and counter staining. Chemical Science, 2017, 8, 6042-6050.	7.4	42
165	Asymmetric mixed-valent complex {[Mn(2-OH-3,5-Cl2-SALPN)]2(THF)}ClO4 shows a temperature-dependent interconversion between g = 2 multiline and low-field EPR signals. Journal of the American Chemical Society, 1992, 114, 6263-6265.	13.7	41
166	Solution Chemistry of Copper(II)â^'Gentamicin Complexes:Â Relevance to Metal-Related Aminoglycoside Toxicity. Inorganic Chemistry, 2003, 42, 1420-1429.	4.0	41
167	Switching the Chirality of the Metal Environment Alters the Coordination Mode in Designed Peptides. Angewandte Chemie - International Edition, 2009, 48, 7371-7374.	13.8	41
168	Enhanced Guest Affinity and Enantioselectivity through Variation of the Gd3+[15-Metallacrown-5] Side Chain. Inorganic Chemistry, 2012, 51, 8034-8041.	4.0	41
169	Application of DFT methods to the study of the coordination environment of the VO2+ ion in VAproteins. Journal of Biological Inorganic Chemistry, 2012, 17, 773-790.	2.6	41
170	Structural and magnetic characterization of alternating AB chains of composition [(Cat)2{MnIII(malonate)2(CH3OH)2][MnIII(malonate)2]}]n and (Cat)2[[MnIII(malonate)2(CH3OH)][MnIII(malonate)2]]n. Inorganic Chemistry, 1993, 32, 3034-3040.	4.0	40
171	The Importance of Stereochemically Active Lone Pairs For Influencing Pb ^{II} and As ^{III} Protein Binding. Chemistry - A European Journal, 2012, 18, 2040-2050.	3.3	40
172	Stepwise, metal-assisted decarboxylation promoted by manganese: reactivity relationship between manganese and vanadium. Inorganic Chemistry, 1989, 28, 3403-3410.	4.0	39
173	NMR studies of iron-gentamicin complexes and the implications for aminoglycoside toxicity. Inorganica Chimica Acta, 1998, 273, 85-91.	2.4	39
174	Reactivity of [{MnIV(salpn)}2(μ-O,μ-OCH3)]+and [{MnIV(salpn)}2(μ-O,μ-OH)]+: Effects of Proton Lability Hydrogen Bonding. Inorganic Chemistry, 1999, 38, 4801-4809.	and 4.0	39
175	Di-2-pyridyl ketone oxime in copper chemistry: di-, tri-, penta- and hexanuclear complexes. Dalton Transactions, 2007, , 2658.	3.3	39
176	Design of Thiolate Rich Metal Binding Sites within a Peptidic Framework. Inorganic Chemistry, 2008, 47, 10875-10888.	4.0	39
177	The Correlation of ¹¹³ Cd NMR and ^{111m} Cd PAC Spectroscopies Provides a Powerful Approach for the Characterization of the Structure of Cd ^{II} â€Substituted Zn ^{II} Proteins. Chemistry - A European Journal, 2009, 15, 3761-3772.	3.3	39
178	Corroborative Models of the Cobalt(II) Inhibited Fe/Mn Superoxide Dismutases. Inorganic Chemistry, 2005, 44, 5001-5010.	4.0	38
179	Probing a Homoleptic PbS ₃ Coordination Environment in a Designed Peptide Using ²⁰⁷ Pb NMR Spectroscopy: Implications for Understanding the Molecular Basis of Lead Toxicity. Angewandte Chemie - International Edition, 2010, 49, 8177-8180.	13.8	38
180	Coordination chemistry of microbial iron transport compounds. 22. pH-dependent Moessbauer spectroscopy of ferric enterobactin and synthetic analogues. Journal of the American Chemical Society, 1983, 105, 4617-4623.	13.7	37

#	Article	IF	CITATIONS
181	Cationic control of spin dimensionality in infinite chains of (cation)2[MnIII(salicylate)2(CH3OH)2][MnIII(salicylate)2]. Inorganic Chemistry, 1991, 30, 3900-3907.	4.0	37
182	Controlling the Polymorph of LnIII(NO3)3-x(OH)x[15-MCCuII(N)S-pheHA-5] Complexes through Solvent Type and LnIIIIon Choice. Crystal Growth and Design, 2007, 7, 1098-1105.	3.0	36
183	Mechanistic Analysis of Nucleophilic Substrates Oxidation by Functional Models of Vanadium-Dependent Haloperoxidases: A Density Functional Theory Study. European Journal of Inorganic Chemistry, 2007, 2007, 515-523.	2.0	36
184	Pb-207 NMR spectroscopy reveals that Pb(II) coordinates with glutathione (GSH) and tris cysteine zinc finger proteins in a PbS3 coordination environment. Journal of Inorganic Biochemistry, 2011, 105, 1030-1034.	3.5	36
185	Monovalent cations (Na+ , K+ , Cs+) inhibit calcium activation of photosynthetic oxygen evolution. FEBS Letters, 1989, 244, 237-240.	2.8	35
186	Chlorine K-Edge X-ray Absorption Spectroscopy as a Probe of Chlorineâ^'Manganese Bonding:Â Model Systems with Relevance to the Oxygen Evolving Complex in Photosystem Ilâ€. Journal of the American Chemical Society, 1997, 119, 4465-4470.	13.7	35
187	Histidine Orientation Modulates the Structure and Dynamics of a <i>de Novo</i> Metalloenzyme Active Site. Journal of the American Chemical Society, 2015, 137, 10164-10176.	13.7	35
188	A Crystallographic Examination of Predisposition versus Preorganization in de Novo Designed Metalloproteins. Journal of the American Chemical Society, 2016, 138, 11979-11988.	13.7	34
180	Structural and spectroscopic characterization of the manganese(IV) Schiff base complex		

#	Article	IF	CITATIONS
199	Assessing Guest Selectivity within Metallacrown Host Compartments. European Journal of Inorganic Chemistry, 2007, 2007, 1347-1350.	2.0	30
200	Derivation of Lanthanide Series Crystal Field Parameters From First Principles. Chemistry - A European Journal, 2019, 25, 15112-15122.	3.3	30
201	Synthetic and computational modeling of the vanadium-dependent haloperoxidases. Pure and Applied Chemistry, 2005, 77, 1595-1605.	1.9	29
202	Structural and Physical Characterization of Tetranuclear [Mn ^{II} ₃ Mn ^{IV}] and [Mn ^{II} ₂ Mn ^{III} ₂] Valence-Isomer Manganese Complexes. Inorganic Chemistry, 2008, 47, 6127-6136.	4.0	29
203	Dy ³⁺ White Light Emission Can Be Finely Controlled by Tuning the First Coordination Sphere of Ga ³⁺ /Dy ³⁺ Metallacrown Complexes. Journal of the American Chemical Society, 2020, 142, 16173-16176.	13.7	29
204	Selective anion encapsulation in solid-state Ln(iii)[15-metallacrown-5]3+ compartments through secondary sphere interactions. Dalton Transactions, 2013, 42, 9803.	3.3	28
205	Synthesis and Magnetic Characterization of Fe(III)-Based 9-Metallacrown-3 Complexes Which Exhibit Magnetorefrigerant Properties. Inorganic Chemistry, 2016, 55, 10238-10247.	4.0	28
206	Siderophilin metal coordination. 3. Crystal structures of the cobalt(III), gallium(III), and copper(II) complexes of ethylenebis[(o-hydroxyphenyl)glycine]. Inorganic Chemistry, 1983, 22, 3096-3103.	4.0	27
207	Modeling the Resting State of Oxalate Oxidase and Oxalate Decarboxylase Enzymes. Inorganic Chemistry, 2008, 47, 3584-3593.	4.0	27
208	Gallium and indium imaging agents. 2. Complexes of sulfonated catechoylamide sequestering agents. Inorganic Chemistry, 1982, 21, 2209-2215.	4.0	26
209	Clarifying the Mechanism of Cation Exchange in Ca(II)[15-MC _{Cu(II)Ligand} -5] Complexes. Inorganic Chemistry, 2012, 51, 11533-11540.	4.0	26
210	Insight into the structural versatility of the Ln(III)[15-metallacrown-5] platform by comparing analogs with Ni(II), Cu(II), and Zn(II) ring ions. Polyhedron, 2013, 52, 491-499.	2.2	26
211	The iron(III) complex of N-[2-((o-hydroxyphenyl)glycino)ethyl]salicylidenimine. A model complex for the iron(III) environment in the transferrins. Journal of the American Chemical Society, 1985, 107, 1651-1658.	13.7	25
212	Using small molecule complexes to elucidate features of photosynthetic water oxidation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1271-1281.	4.0	25
213	<i>De Novo</i> Design and Characterization of Copper Metallopeptides Inspired by Native Cupredoxins. Inorganic Chemistry, 2015, 54, 9470-9482.	4.0	25
214	Catalysis and Electron Transfer in Deâ€Novo Designed Helical Scaffolds. Angewandte Chemie - International Edition, 2020, 59, 7678-7699.	13.8	25
215	Catalysis and Electron Transfer in <i>De Novo</i> Designed Metalloproteins. Chemical Reviews, 2022, 122, 12046-12109.	47.7	25
216	An isocratic separation of underivatized gentamicin components, 1H NMR assignment and protonation pattern. Carbohydrate Research, 2003, 338, 2853-2862.	2.3	24

#	Article	IF	CITATIONS
217	Synthesis and structure of : A new member of anion encapsulating metallamacrocyles. Inorganic Chemistry Communication, 2005, 8, 1173-1176.	3.9	24
218	A structurally characterized dichloro-manganese(IV) complex capable of halogenating alkenes. Journal of the Chemical Society Chemical Communications, 1995, , 2015.	2.0	23
219	51V ESE-ENDOR Studies of Oxovanadium(IV) Complexes:  Investigation of the Nuclear Quadrupole Interaction. Journal of Physical Chemistry B, 1998, 102, 8145-8150.	2.6	23
220	The Relationship between the Manganese(II) Zero-Field Interaction and Mn(II)/Mn(III) Redox Potential of Mn(4â€~-X-terpy)2Complexes. Journal of the American Chemical Society, 2007, 129, 13825-13827.	13.7	23
221	Modifying the Steric Properties in the Second Coordination Sphere of Designed Peptides Leads to Enhancement of Nitrite Reductase Activity. Angewandte Chemie - International Edition, 2018, 57, 3954-3957.	13.8	23
222	Ferric ion sequestering agents. 12. Gallium and indium imaging agents. 4. Lipophilic enterobactin analogs. Stabilities of the gallium and ferric ion complexes of terminally N-substituted catechoylamines. Inorganic Chemistry, 1985, 24, 2447-2452.	4.0	22
223	Trinuclear Mixed-Valent MnII/MnIV/MnII Complexes— Structure and Magnetic Behavior. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003, 629, 2348-2355.	1.2	22
224	The first spectroscopic model for the S1 state multiline signal of the OEC. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1655, 149-157.	1.0	22
225	Mn(II) complexes of monoanionic bidentate chelators: X-ray crystal structures of Mn(dha)2(CH3OH)2 (Hdha=dehydroacetic acid) and [Mn(ema)2(H2O)]2·2H2O (Hema=2-ethyl-3-hydroxy-4-pyrone). Inorganica Chimica Acta, 2006, 359, 228-236.	2.4	22
226	Understanding the Biological Chemistry of Mercury Using a de novo Protein Design Strategy. ACS Symposium Series, 2009, , 183-197.	0.5	22
227	A Unique Ln III {[3.3.1]Ga III Metallacryptate} Series That Possesses Properties of Slow Magnetic Relaxation and Visible/Nearâ€Infrared Luminescence. Chemistry - A European Journal, 2018, 24, 10773-10783.	3.3	22
228	Mechanism for the Reduction of the Mixed-Valent MnIIIMnIV[2-OHsalpn]2+Complex by Tertiary Amines. Inorganic Chemistry, 2000, 39, 5831-5837.	4.0	21
229	Probing the Coordination Environment of the Human Copper Chaperone HAH1: Characterization of Hg ^{II} â€Bridged Homodimeric Species in Solution. Chemistry - A European Journal, 2013, 19, 9042-9049.	3.3	20
230	The acid promoted disproportionation of a vanadium(IV) phenolate: implications for vanadium uptake in tunicates. Journal of the Chemical Society Chemical Communications, 1986, , 1218.	2.0	19
231	Effects of alternation in some quasiâ€oneâ€dimensional magnetic materials. Journal of Applied Physics, 1991, 69, 6013-6015.	2.5	19
232	Experimental and Theoretical Evaluation of Multisite Cadmium(II) Exchange in Designed Three-Stranded Coiled-Coil Peptides. Journal of the American Chemical Society, 2012, 134, 6191-6203.	13.7	19
233	Clarifying the Copper Coordination Environment in a <i>de Novo</i> Designed Red Copper Protein. Inorganic Chemistry, 2018, 57, 12291-12302.	4.0	19
234	Corroborative cobalt and zinc model compounds of α-amino-β-carboxymuconic-ε-semialdehyde decarboxylase (ACMSD). Dalton Transactions, 2009, , 51-62.	3.3	18

#	Article	IF	CITATIONS
235	Design of 2D Porous Coordination Polymers Based on Metallacrown Units. Chemistry - A European Journal, 2016, 22, 6482-6486.	3.3	18
236	Anion Encapsulation Drives the Formation of Dimeric Gd ^{III} [15-metallacrown-5] ³⁺ Complexes in Aqueous Solution. Inorganic Chemistry, 2017, 56, 4771-4774.	4.0	18
237	Iodinated Metallacrowns: Toward Combined Bimodal Nearâ€Infrared and Xâ€Ray Contrast Imaging Agents. Chemistry - A European Journal, 2020, 26, 1274-1277.	3.3	18
238	Metallacrowns: Supramolecular Constructs With Potential in Extended Solids, Solution-State Dynamics, Molecular Magnetism, and Imaging. Advances in Inorganic Chemistry, 2018, , 177-246.	1.0	17
239	Evaluating hydrogen bond interactions in enzymes containing Mn(III)-histidine complexation using manganese-imidazole complexes. Journal of Biological Inorganic Chemistry, 2003, 8, 283-293.	2.6	16
240	Direct Observation of Nanosecond Water Exchange Dynamics at a Protein Metal Site. Journal of the American Chemical Society, 2017, 139, 79-82.	13.7	16
241	Further insights into the metal ion binding abilities and the metalation pathway of a plant metallothionein from Musa acuminata. Journal of Biological Inorganic Chemistry, 2018, 23, 91-107.	2.6	16
242	Incorporation of second coordination sphere d-amino acids alters Cd(II) geometries in designed thiolate-rich proteins. Journal of Biological Inorganic Chemistry, 2018, 23, 123-135.	2.6	16
243	Development of a Rubredoxin-Type Center Embedded in a <i>de Dovo</i> -Designed Three-Helix Bundle. Biochemistry, 2018, 57, 2308-2316.	2.5	16
244	Development of de Novo Copper Nitrite Reductases: Where We Are and Where We Need To Go. ACS Catalysis, 2018, 8, 8046-8057.	11.2	16
245	Rational De Novo Design of a Cu Metalloenzyme for Superoxide Dismutation. Chemistry - A European Journal, 2020, 26, 249-258.	3.3	16
246	Visible, Near-Infrared, and Dual-Range Luminescence Spanning the 4f Series Sensitized by a Gallium(III)/Lanthanide(III) Metallacrown Structure. Journal of Physical Chemistry A, 2020, 124, 10550-10564.	2.5	16
247	Stepwise metal-assisted oxidative decarboxylation of vanadium(V) ethylenebis[o-hydroxyphenylglycine]. Isolation of a possible intermediate. Journal of the American Chemical Society, 1984, 106, 3360-3362.	13.7	15
248	Synthetic Models for Vanadium Haloperoxidases. ACS Symposium Series, 1998, , 157-167.	0.5	15
249	Temperature-, molar ratio- and counterion-effects on the crystal growth of bipyridinium-bis(alkylcarboxylic acid)–crown ether pseudorotaxanes. New Journal of Chemistry, 2007, 31, 439-446.	2.8	15
250	Variable primary coordination environments of Cd(<scp>ii</scp>) binding to three helix bundles provide a pathway for rapid metal exchange. Metallomics, 2015, 7, 1555-1561.	2.4	15
251	Sculpting Metalâ€binding Environments in <i>De Novo</i> Designed Threeâ€helix Bundles. Israel Journal of Chemistry, 2015, 55, 85-95.	2.3	15
252	Methylated Histidines Alter Tautomeric Preferences that Influence the Rates of Cu Nitrite Reductase Catalysis in Designed Peptides. Journal of the American Chemical Society, 2019, 141, 7765-7775.	13.7	15

#	Article	IF	CITATIONS
253	Electron transfer activity of a de novo designed copper center in a three-helix bundle fold. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 522-530.	1.0	14
254	The linear Mn II complex Mn3(5-NO2-salimH)2(OAc)4 provides an alternative structure type for the carboxylate shift in proteins. Journal of the Chemical Society Chemical Communications, 1993, , 1741.	2.0	13
255	Oxidation of m-chlorobenzoic acid by Mn(V)ĩO complexes. Inorganica Chimica Acta, 2002, 341, 113-117.	2.4	13
256	Metalloprotein Folding. Inorganic Chemistry, 2004, 43, 7894-7896.	4.0	13
257	Noncoded Amino Acids in <i>de Novo</i> Metalloprotein Design: Controlling Coordination Number and Catalysis. Accounts of Chemical Research, 2019, 52, 1160-1167.	15.6	13
258	Disruption of the La(III)[15-Metallacrown-5] Cavity through Bithiophene Dicarboxylate Inclusion. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2010, 65, 263-s314.	0.7	12
259	Intramolecular Photogeneration of a Tyrosine Radical in a Designed Protein. ChemPhotoChem, 2017, 1, 89-92.	3.0	12
260	Functionalization of luminescent lanthanide-gallium metallacrowns using copper-catalyzed alkyne-azide cycloaddition and thiol-maleimide Michael addition. Journal of Inorganic Biochemistry, 2019, 192, 119-125.	3.5	12
261	[Ga 3+ 8 Sm 3+ 2 , Ga 3+ 8 Tb 3+ 2] Metallacrowns are Highly Promising Ratiometric Luminescent Molecular Nanothermometers Operating at Physiologically Relevant Temperatures. Chemistry - A European Journal, 2020, 26, 13792-13796.	3.3	12
262	De Novo Design of Metalloproteins and Metalloenzymes in a Three-Helix Bundle. Methods in Molecular Biology, 2016, 1414, 187-196.	0.9	11
263	d ysteine Ligands Control Metal Geometries within De Novo Designed Three‧tranded Coiled Coils. Chemistry - A European Journal, 2017, 23, 8232-8243.	3.3	11
264	How Outer Coordination Sphere Modifications Can Impact Metal Structures in Proteins: A Crystallographic Evaluation. Chemistry - A European Journal, 2019, 25, 6773-6787.	3.3	11
265	Explaining How α-Hydroxamate Ligands Control the Formation of Cu(II)-, Ni(II)-, and Zn(II)-Containing Metallacrowns. Inorganic Chemistry, 2019, 58, 16642-16659.	4.0	11
266	Peculiarities of crystal structures and photophysical properties of Ga ^{III} /Ln ^{III} metallacrowns with a non-planar [12-MC-4] core. Inorganic Chemistry Frontiers, 2020, 7, 1553-1563.	6.0	11
267	Traversing the Red–Green–Blue Color Spectrum in Rationally Designed Cupredoxins. Journal of the American Chemical Society, 2020, 142, 15282-15294.	13.7	10
268	Making or Breaking Metalâ€Ðependent Catalytic Activity: The Role of Stammers in Designed Three‧tranded Coiled Coils. Angewandte Chemie - International Edition, 2020, 59, 20445-20449.	13.8	10
269	The pHâ€Induced Selectivity Between Cysteine or Histidine Coordinated Heme in an Artificial αâ€Helical Metalloprotein. Angewandte Chemie - International Edition, 2021, 60, 3974-3978.	13.8	10
270	Solid-State55Mn NMR Spectroscopy of Bis(μ-oxo)dimanganese(IV) [Mn2O2(salpn)2], a Model for the Oxygen Evolving Complex in Photosystem II. Journal of the American Chemical Society, 2010, 132, 16727-16729.	13.7	9

#	Article	IF	CITATIONS
271	Understanding the Mechanism of Vanadium-Dependent Haloperoxidases and Related Biomimetic Catalysis. ACS Symposium Series, 2007, , 148-162.	0.5	8
272	Natural and Artificial Proteins Containing Cadmium. Metal Ions in Life Sciences, 2013, 11, 303-337.	2.8	8
273	Sm(iii)[12-MCGa(III)shi-4] as a luminescent probe for G-quadruplex structures. Metallomics, 2017, 9, 1735-1744.	2.4	8
274	Modifying the Steric Properties in the Second Coordination Sphere of Designed Peptides Leads to Enhancement of Nitrite Reductase Activity. Angewandte Chemie, 2018, 130, 4018-4021.	2.0	8
275	Modeling the Chemistry and Properties of Multinuclear Manganese Enzymes. , 1995, , 287-298.		8
276	Investigation of substrate specificity of creatine kinase using chromium(III) and cobalt(III) complexes of adenosine 5'-diphosphate. Biochemistry, 1984, 23, 153-158.	2.5	7
277	Determination of the absolute configurations of the isomers of triamminecobalt(III) adenosine triphosphate. Journal of the American Chemical Society, 1986, 108, 4167-4171.	13.7	7
278	10. Lead(II) Binding in Natural and Artificial Proteins. , 2017, 17, 271-318.		7
279	Enhanced Photoinduced Electron Transfer Through a Tyrosine Relay in a Deâ€Novo Designed Protein Scaffold Bearing a Photoredox Unit and a Fe II S 4 Site. ChemPhotoChem, 2021, 5, 665-668.	3.0	7
280	Reactivity and Mechanism of Manganese Enzymes. Advances in Chemistry Series, 1996, , 265-301.	0.6	6
281	Magnetic properties of two Gd ^{III} Fe ^{III} ₄ metallacrowns and strategies for optimizing the magnetocaloric effect of this topology. Inorganic Chemistry Frontiers, 2021, 8, 2611-2623.	6.0	6
282	Identification of slow magnetic relaxation and magnetocoolant capabilities of heterobimetallic lanthanide-manganese metallacrown-like compounds. Polyhedron, 2021, 202, 115190.	2.2	6
283	Preparation of a new 16-MC-4 structure type that captures Mn(II) in the central cavity. Inorganica Chimica Acta, 2009, 362, 878-886.	2.4	5
284	Assembly of zinc metallacrowns with an α-amino hydroxamic acid ligand. Chinese Chemical Letters, 2015, 26, 444-448.	9.0	5
285	Katalyse und Elektronentransfer in helikalen Deâ€novoâ€Gerüststrukturen. Angewandte Chemie, 2020, 132, 7750-7773.	2.0	5
286	Lanthanide Identity Governs Guestâ€Induced Dimerization in	3.3	5
287	Three-Dimensional Porous Architectures Based on MnII/III Three-Blade Paddle Wheel Metallacryptates. Crystal Growth and Design, 2019, 19, 1954-1964.	3.0	4
288	Nitrite reductase activity within an antiparallel de novo scaffold. Journal of Biological Inorganic Chemistry, 2021, 26, 855-862.	2.6	4

#	Article	IF	CITATIONS
289	Tuning the photophysical properties of lanthanide(<scp>iii</scp>)/zinc(<scp>ii</scp>) â€~encapsulated sandwich' metallacrowns emitting in the near-infrared range. Chemical Science, 2022, 13, 2919-2931.	7.4	4
290	Triamminechromium(III) complexes of tripolyphosphate and adenosine tri- and diphosphate. Journal of Inorganic Biochemistry, 1991, 41, 105-116.	3.5	3
291	The Preparation of a Double Metallahelicate Containing 28 Copper Atoms. Angewandte Chemie, 2003, 115, 564-567.	2.0	3
292	Catalytic oxidation of 3,5-di-tert-butylcatechol by a Series of mononuclear manganese complexes: Synthesis, structure, and kinetic investigation. Journal of Inorganic Biochemistry, 2003, 96, 172.	3.5	3
293	Luminescence from Isolated Tb-based Metallacrown Molecular Complexes on h-BN. Microscopy and Microanalysis, 2019, 25, 604-605.	0.4	3
294	Open Reading Frame 1 Protein of the Human Long Interspersed Nuclear Element 1 Retrotransposon Binds Multiple Equivalents of Lead. Journal of the American Chemical Society, 2021, 143, 15271-15278.	13.7	3
295	Determination of the screw sense specificity of bovine liver fructokinase. Biochemistry, 1985, 24, 1619-1622.	2.5	2
296	XAS of Mn in the photosynthetic oxygen evolving complex. Physica B: Condensed Matter, 1989, 158, 107-109.	2.7	2
297	Non-Heme Peroxidases and Catalases: Mechanistic Implications from the Studies of Manganese and Vanadium Model Compounds. , 2000, , 215-267.		2
298	The pHâ€Induced Selectivity Between Cysteine or Histidine Coordinated Heme in an Artificial αâ€Helical Metalloprotein. Angewandte Chemie, 2021, 133, 4020-4024.	2.0	2
299	Cu(I) Binding to Designed Proteins Reveals a Putative Copper Binding Site of the Human Line1 Retrotransposon Protein ORF1p. Inorganic Chemistry, 2022, 61, 5084-5091.	4.0	2
300	Structural, Spectroscopic, and Reactivity Models for the Manganese Catalases. ChemInform, 2004, 35, no.	0.0	1
301	Use of the mechanistic probe 2-methyl-1-phenylpropan-2-yl hydroperoxide (MPPH) to discriminate between the formation of MnIVMnIV(OH) and MnIVMnVO species. Polyhedron, 2013, 64, 99-105.	2.2	1
302	Innentitelbild: Design of a Three-Helix Bundle Capable of Binding Heavy Metals in a Triscysteine Environment (Angew. Chem. 9/2011). Angewandte Chemie, 2011, 123, 1990-1990.	2.0	0
303	Inside Cover: Design of a Three-Helix Bundle Capable of Binding Heavy Metals in a Triscysteine Environment (Angew. Chem. Int. Ed. 9/2011). Angewandte Chemie - International Edition, 2011, 50, 1948-1948.	13.8	0
304	Making or Breaking Metalâ€Dependent Catalytic Activity: The Role of Stammers in Designed Three‧tranded Coiled Coils. Angewandte Chemie, 2020, 132, 20625-20629.	2.0	0
305	A Modelling Approach for Understanding Water Oxidation in Photosynthesis. , 1995, , 1355-1358.		0
306	Assessing the Viability of H atom Abstraction as a Mechanism for PS II water oxidation. , 1998, ,		0