Cham Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3132731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants. Journal of Hazardous Materials, 2008, 154, 118-127.	12.4	148
2	Visible-light absorptivity of a zincoxysulfide (ZnOxS1â^'x) composite semiconductor and its photocatalytic activities for degradation of organic pollutants under visible-light irradiation. Applied Catalysis A: General, 2007, 330, 127-133.	4.3	95
3	Influence of powder morphology on thermoelectric anisotropy of spark-plasma-sintered Bi–Te-based thermoelectric materials. Acta Materialia, 2011, 59, 405-411.	7.9	70
4	Immobilization of TiO2 on an ITO substrate to facilitate the photoelectrochemical degradation of an organic dye pollutant. Electrochimica Acta, 2009, 54, 5715-5720.	5.2	36
5	Significant Enhancement in the Thermoelectric Performance of a Bismuth Telluride Nanocompound through Brief Fabrication Procedures. ACS Applied Materials & Interfaces, 2012, 4, 2949-2954.	8.0	28
6	Dual defect system of tellurium antisites and silver interstitials in off-stoichiometric Bi ₂ (Te,Se) _{3+y} causing enhanced thermoelectric performance. Journal of Materials Chemistry A, 2019, 7, 791-800.	10.3	28
7	Concurrent defects of intrinsic tellurium and extrinsic silver in an n-type Bi2Te2.88Se0.15 thermoelectric material. Nano Energy, 2019, 60, 26-35.	16.0	27
8	Interfacial energy band and phonon scattering effect in Bi2Te3-polypyrrole hybrid thermoelectric material. Applied Physics Letters, 2018, 113, .	3.3	17
9	Solvothermal synthesis and characterization of a CuInTe2 absorber for thin-film photovoltaics. Materials Research Bulletin, 2012, 47, 4054-4058.	5.2	15
10	New Chemical Reaction Process of a Bi ₂ Te _{2.7} Se _{0.3} Nanomaterial for Feasible Optimization in Transport Properties Resulting in Predominant n-Type Thermoelectric Performance. Industrial & Engineering Chemistry Research, 2016, 55, 5623-5633.	3.7	15
11	Crystal alignment of a LiFePO ₄ cathode material for lithium ion batteries using its magnetic properties. RSC Advances, 2019, 9, 31936-31942.	3.6	13
12	Interfacial effects in an inorganic/organic composite based on Bi ₂ Te ₃ inducing decoupled transport properties and enhanced thermoelectric performance. Journal of Materials Chemistry A, 2022, 10, 13780-13792.	10.3	12
13	Crystal Alignment Technology of Electrode Material for Enhancing Electrochemical Performance in Lithium Ion Battery. Journal of the Electrochemical Society, 2021, 168, 040502.	2.9	11
14	Crystal alignment of a LiNi0.5Mn0.3Co0.2O2 electrode material for lithium ion batteries using its magnetic properties. Applied Physics Letters, 2020, 117, .	3.3	10
15	Decoupling effect of electrical and thermal properties of Bi2Te3-polypyrrole hybrid material causing remarkable enhancement in thermoelectric performance. Journal of Industrial and Engineering Chemistry, 2019, 71, 119-126.	5.8	8
16	Energy filtering and phonon scattering effects in Bi2Te3–PEDOT:PSS composite resulting in enhanced n-type thermoelectric performance. Applied Physics Letters, 2022, 120, .	3.3	8
17	Decoupling of thermal and electrical conductivities by adjusting the anisotropic nature in tungsten diselenide causing significant enhancement in thermoelectric performance. Journal of Industrial and Engineering Chemistry, 2018, 60, 458-464.	5.8	7
18	A novel chemical process of Bi 2 Te 2.7 Se 0.3 nanocompound for effective adjustment in transport properties resulting in remarkable n-type thermoelectric performance. Scripta Materialia, 2016, 119, 13-16.	5.2	4

Снам Кім

#	Article	IF	CITATIONS
19	Effects of the Interface between Inorganic and Organic Components in a Bi2Te3–Polypyrrole Bulk Composite on Its Thermoelectric Performance. Materials, 2021, 14, 3080.	2.9	4
20	Morphological characteristics in polycrystalline tungsten diselenide regulating transport properties lead to predominant thermoelectric performance. Journal of Alloys and Compounds, 2017, 722, 183-189.	5.5	3
21	Selective generation of Ag interstitial defects in Te-rich Bi 2 (Te,Se) 3 using Ag nanoparticles causing significant improvement in thermoelectric performance. Scripta Materialia, 2018, 144, 36-39.	5.2	1