
Xing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3132598/publications.pdf Version: 2024-02-01

XINC WANC

#	Article	IF	CITATIONS
1	Depolymerization of corn cobs using the CO2/lithium bromide trihydrate system for low molecular weight lignin with high antioxidant activity. Biomass Conversion and Biorefinery, 2024, 14, 7125-7137.	4.6	Ο
2	Facile adjusting the concentration of siliceous seed to obtain different HZSM-5 zeolite catalysts for effective catalytic depolymerization reaction of lignin. Biomass Conversion and Biorefinery, 2023, 13, 2017-2028.	4.6	8
3	Fabricating lignin-based carbon nanofibers as versatile supercapacitors from food wastes. International Journal of Biological Macromolecules, 2022, 194, 632-643.	7.5	29
4	Multifunction lignin-based carbon nanofibers with enhanced electromagnetic wave absorption and surpercapacitive energy storage capabilities. International Journal of Biological Macromolecules, 2022, 199, 201-211.	7.5	15
5	Cellulose I nanocrystals (CNCs I) prepared in mildly acidic lithium bromide trihydrate (MALBTH) and their application for stabilizing Pickering emulsions. International Journal of Biological Macromolecules, 2022, 201, 59-66.	7.5	10
6	Ethanol organosolv lignin from different agricultural residues: Toward basic structural units and antioxidant activity. Food Chemistry, 2022, 376, 131895.	8.2	31
7	Effect of hierarchical HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to renewable phenols. Journal of Porous Materials, 2022, 29, 445-457.	2.6	6
8	The Synthesis of h-BN-Modified Z-Scheme WO ₃ /g-C ₃ N ₄ Heterojunctions for Enhancing Visible Light Photocatalytic Degradation of Tetracycline Pollutants. ACS Omega, 2022, 7, 6035-6045.	3.5	21
9	Lignin condensation inhibition and antioxidant activity improvement in a reductive ternary DES fractionation microenvironment by thiourea dioxide self-decomposition. New Journal of Chemistry, 2022, 46, 8892-8900.	2.8	3
10	Surface Gelatin-Coated β-Mannanase-Immobilized Lignin for Delayed Release of β-Mannanase to Remediate Guar-Based Fracturing Fluid Damage. ACS Omega, 2022, 7, 11722-11730.	3.5	0
11	Ni ₁₂ P ₅ /P–N–C Derived from Natural Single-Celled Chlorella for Catalytic Depolymerization of Lignin into Monophenols. ACS Omega, 2022, 7, 13134-13143.	3.5	3
12	Lignin-based electrospinning nanofibers for reversible iodine capture and potential applications. International Journal of Biological Macromolecules, 2022, 208, 782-793.	7.5	13
13	From liquid hot water pretreatment solution to lignin-based hydrophobic deep eutectic solvent for highly efficient extraction of Cr (VI). International Journal of Biological Macromolecules, 2022, 208, 883-889.	7.5	4
14	Biodegradation of Lignin into Low-Molecular-Weight Oligomers by Multicopper Laccase-Mimicking Nanozymes of the Cu/GMP Complex at Room Temperature. ACS Sustainable Chemistry and Engineering, 2022, 10, 5489-5499.	6.7	16
15	Magnesium lignosulfonate-derived N, S co-doped 3D flower-like hierarchically porous carbon as an advanced metal-free electrocatalyst towards oxygen reduction reaction. International Journal of Biological Macromolecules, 2022, 209, 904-911.	7.5	12
16	One-pot preparation of amphoteric cellulose polymers for simultaneous recovery of ammonium and dihydrogen phosphate from wastewater and reutilizing as slow-release fertilizer. European Polymer Journal, 2022, 171, 111223.	5.4	9
17	pH fractionated lignin for the preparation of lignin-based magnetic nanoparticles for the removal of methylene blue dye. Separation and Purification Technology, 2022, 295, 121302.	7.9	22
18	Fabrication of uniform lignin nanoparticles with tunable size for potential wound healing application. International Journal of Biological Macromolecules, 2022, 214, 170-180.	7.5	20

XING WANG

#	Article	IF	CITATIONS
19	Preparation, characterization and formation mechanism of size-controlled lignin nanoparticles. International Journal of Biological Macromolecules, 2022, 217, 312-320.	7.5	14
20	Stabilization of Pickering emulsions via synergistic interfacial interactions between cellulose nanofibrils and nanocrystals. Food Chemistry, 2022, 395, 133603.	8.2	7
21	Rapid iodine capture from radioactive wastewater by green and low-cost biomass waste derived porous silicon–carbon composite. RSC Advances, 2021, 11, 5268-5275.	3.6	15
22	Tuning structure of spent coffee ground lignin by temperature fractionation to improve lignin-based carbon nanofibers mechanical performance. International Journal of Biological Macromolecules, 2021, 174, 254-262.	7.5	21
23	Immobilization of laccases onto cellulose nanocrystals derived from waste newspaper: relationship between immobilized laccase activity and dialdehyde content. Cellulose, 2021, 28, 4793-4805.	4.9	19
24	Could preoxidation always promote the subsequent hydroconversion of lignin? Two counterexamples catalyzed by Cu/CuMgAlOx in supercritical ethanol. Bioresource Technology, 2021, 332, 125142.	9.6	8
25	Effective fractionation strategy of sugarcane bagasse lignin to fabricate quality lignin-based carbon nanofibers supercapacitors. International Journal of Biological Macromolecules, 2021, 184, 604-617.	7.5	23
26	Effect of lignin structure in different biomass resources on the performance of lignin-based carbon nanofibers as supercapacitor electrode. Industrial Crops and Products, 2021, 170, 113745.	5.2	50
27	Characterization of lignin extracted from Acanthopanax senticosus residue using different methods on UV-resistant behavior. International Journal of Biological Macromolecules, 2021, 192, 498-505.	7.5	18
28	Renewable lignin-based carbon nanofiber as Ni catalyst support for depolymerization of lignin to phenols in supercritical ethanol/water. Renewable Energy, 2020, 147, 1331-1339.	8.9	86
29	From lignin-derived bio-oil to lignin-g-polyacrylonitrile nanofiber: High lignin substitution ratio and maintaining good nanofiber morphology. Polymer Testing, 2020, 81, 106207.	4.8	15
30	Ni–Mg–Al Catalysts Effectively Promote Depolymerization of Rice Husk Lignin to Bio-Oil. Catalysis Letters, 2020, 150, 1591-1604.	2.6	11
31	Activity of microporous lignin-derived carbon-based solid catalysts used in biodiesel production. International Journal of Biological Macromolecules, 2020, 164, 1840-1846.	7.5	29
32	Efficient and controllable ultrasound-assisted depolymerization of organosolv lignin catalyzed to liquid fuels by MCM-41 supported phosphotungstic acid. RSC Advances, 2020, 10, 31479-31494.	3.6	15
33	Catalytic conversion of lignin to bio-oil over PTA/MCM-41 catalyst assisted by ultrasound acoustic cavitation. Fuel Processing Technology, 2020, 206, 106479.	7.2	32
34	Lignin bio-oil-based electrospun nanofibers with high substitution ratio property for potential carbon nanofibers applications. Polymer Testing, 2020, 89, 106591.	4.8	20
35	Unlocking the response of lignin structure by depolymerization process improved lignin-based carbon nanofibers preparation and mechanical strength. International Journal of Biological Macromolecules, 2020, 156, 669-680.	7.5	26
36	Ultrasound acoustic cavitation enhances depolymerization of organosolv lignin to phenolic monomers and low molecular weight lignin bio-oils. Fuel Processing Technology, 2020, 203, 106387.	7.2	21

XING WANG

#	Article	IF	CITATIONS
37	A novel cellulose acetate/poly (ionic liquid) composite air filter. Cellulose, 2020, 27, 3889-3902.	4.9	35
38	Waste Seashells as a Highly Active Catalyst for Cyclopentanone Self-Aldol Condensation. Catalysts, 2019, 9, 661.	3.5	14
39	Novel lignin–chitosan–PVA composite hydrogel for wound dressing. Materials Science and Engineering C, 2019, 104, 110002.	7.3	201
40	Novel Nonprecious Metal Loading Multi-Metal Oxide Catalysts for Lignin Depolymerization. Energy & Fuels, 2019, 33, 6491-6500.	5.1	11
41	Biomimetic Biomass-Bsed Carbon Fibers: Effect of Covalent-Bnd Connection on Performance of Derived Carbon Fibers. ACS Sustainable Chemistry and Engineering, 2019, 7, 16084-16093.	6.7	36
42	A Comparison of Phenolic Monomers Produced from Different Types of Lignin by Phosphotungstic Acid Catalysts. ChemistryOpen, 2019, 8, 643-649.	1.9	20
43	Glass bead-catalyzed depolymerization of poplar wood lignin into low-molecular-weight products. New Journal of Chemistry, 2019, 43, 9280-9288.	2.8	3
44	A Phosphotungstic Acid Catalyst for Depolymerization in Bulrush Lignin. Catalysts, 2019, 9, 399.	3.5	23
45	Catalytic oxidation of biorefinery corncob lignin via zirconium(IV) chloride and sodium hydroxide in acetonitrile/water: A functionality study. Science of the Total Environment, 2019, 675, 203-212.	8.0	21
46	Self-assembly of cationic amphiphilic cellulose-g-poly (p-dioxanone) copolymers. Carbohydrate Polymers, 2019, 204, 214-222.	10.2	26
47	Effect of particle size of HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to phenols. Journal of Analytical and Applied Pyrolysis, 2018, 129, 13-20.	5.5	38
48	Structural elucidation of industrial bioethanol residual lignin from corn stalk: A potential source of vinyl phenolics. Fuel Processing Technology, 2018, 169, 50-57.	7.2	81
49	Impact of lignin extraction methods on microstructure and mechanical properties of ligninâ€based carbon fibers. Journal of Applied Polymer Science, 2018, 135, 45580.	2.6	40
50	Lignin Structure and Solvent Effects on the Selective Removal of Condensed Units and Enrichment of S-Type Lignin. Polymers, 2018, 10, 967.	4.5	24
51	Lignin/Polyacrylonitrile Carbon Fibers: The Effect of Fractionation and Purification on Properties of Derived Carbon Fibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 8554-8562.	6.7	58
52	Structural changes of poplar wood lignin after supercritical pretreatment using carbon dioxide and ethanol–water as co-solvents. RSC Advances, 2017, 7, 8314-8322.	3.6	67
53	Mesoporous Bi2WO6 sheets synthesized via a sol–gel freeze-drying method with excellent photocatalytic performance. Journal of Sol-Gel Science and Technology, 2017, 82, 101-108.	2.4	11
54	Removal of chromium (VI) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light. Applied Catalysis B: Environmental, 2017, 219, 53-62.	20.2	219

#	Article	IF	CITATIONS
55	Exploration of mechanisms of lignin extraction by different methods. Environmental Progress and Sustainable Energy, 0, , e13785.	2.3	3
56	Base-catalyzed depolymerization of lignin into phenols: methoxy groups' secondary reactions triggered phenol regulation and repolymerization. Biomass Conversion and Biorefinery, 0, , 1.	4.6	3
57	Advances in the application of molecular sieves as catalysts for lignin depolymerization ― <scp>HZSM</scp> â€5 as an example. Environmental Progress and Sustainable Energy, 0, , .	2.3	4