Sebastian Grönke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3132584/publications.pdf

Version: 2024-02-01

44 papers 4,440 citations

172386 29 h-index 254106 43 g-index

54 all docs

54 docs citations

54 times ranked 6000 citing authors

#	Article	IF	CITATIONS
1	<i>C9orf72</i> repeat expansions cause neurodegeneration in <i>Drosophila</i> through arginine-rich proteins. Science, 2014, 345, 1192-1194.	6.0	632
2	Molecular Evolution and Functional Characterization of Drosophila Insulin-Like Peptides. PLoS Genetics, 2010, 6, e1000857.	1.5	557
3	Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metabolism, 2005, 1, 323-330.	7.2	501
4	A Drosophila Insulin-like Peptide Promotes Growth during Nonfeeding States. Developmental Cell, 2009, 17, 874-884.	3.1	308
5	Dual Lipolytic Control of Body Fat Storage and Mobilization in Drosophila. PLoS Biology, 2007, 5, e137.	2.6	275
6	Control of Fat Storage by a Drosophila PAT Domain Protein. Current Biology, 2003, 13, 603-606.	1.8	256
7	Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biology, 2017, 18, 56.	3.8	164
8	Opposite and redundant roles of the two <i>Drosophila</i> perilipins in lipid mobilization. Journal of Cell Science, 2012, 125, 3568-3577.	1.2	127
9	A <i>Drosophila</i> Model of Neuronopathic Gaucher Disease Demonstrates Lysosomal-Autophagic Defects and Altered mTOR Signalling and Is Functionally Rescued by Rapamycin. Journal of Neuroscience, 2016, 36, 11654-11670.	1.7	117
10	MTERF3 Regulates Mitochondrial Ribosome Biogenesis in Invertebrates and Mammals. PLoS Genetics, 2013, 9, e1003178.	1.5	85
11	Increased Glucose Transport into Neurons Rescues AÎ 2 Toxicity in Drosophila. Current Biology, 2016, 26, 2291-2300.	1.8	83
12	Lowered Insulin Signalling Ameliorates Age-Related Sleep Fragmentation in Drosophila. PLoS Biology, 2014, 12, e1001824.	2.6	80
13	A nutritional memory effect counteracts the benefits of dietary restriction in old mice. Nature Metabolism, 2019, 1, 1059-1073.	5.1	80
14	Tousled-like kinase functions with the chromatin assembly pathway regulating nuclear divisions. Genes and Development, 2003, 17, 2578-2590.	2.7	77
15	An Insulin-Sensitive Circular RNA that Regulates Lifespan in Drosophila. Molecular Cell, 2020, 79, 268-279.e5.	4.5	77
16	Mitochondrial and Cytoplasmic Thioredoxin Reductase Variants Encoded by a Single Drosophila Gene Are Both Essential for Viability. Journal of Biological Chemistry, 2002, 277, 11521-11526.	1.6	74
17	Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using <i>Drosophila melanogaster </i> . G3: Genes, Genomes, Genetics, 2016, 6, 1427-1437.	0.8	67
18	A triple drug combination targeting components of the nutrient-sensing network maximizes longevity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20817-20819.	3.3	63

#	Article	IF	CITATIONS
19	Sense and antisense RNA are not toxic in Drosophila models of C9orf72-associated ALS/FTD. Acta Neuropathologica, 2018, 135, 445-457.	3.9	59
20	The Bicoid Stability Factor Controls Polyadenylation and Expression of Specific Mitochondrial mRNAs in Drosophila melanogaster. PLoS Genetics, 2011, 7, e1002324.	1.5	55
21	Insulin and TOR signal in parallel through FOXO and S6K to promote epithelial wound healing. Nature Communications, 2016, 7, 12972.	5.8	52
22	Insulin signalling regulates remating in female <i>Drosophila</i> . Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 424-431.	1.2	49
23	Branched-Chain Amino Acids Have Equivalent Effects to Other Essential Amino Acids on Lifespan and Aging-Related Traits in Drosophila. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 24-31.	1.7	49
24	Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies. Nature Communications, 2015, 6, 8808.	5.8	48
25	A proteomic atlas of insulin signalling reveals tissueâ€specific mechanisms of longevity assurance. Molecular Systems Biology, 2017, 13, 939.	3.2	42
26	A TORC1-histone axis regulates chromatin organisation and non-canonical induction of autophagy to ameliorate ageing. ELife, 2021, 10 , .	2.8	40
27	${\sf A\hat{l}^243}$ is neurotoxic and primes aggregation of ${\sf A\hat{l}^240}$ in vivo. Acta Neuropathologica, 2015, 130, 35-47.	3.9	39
28	Deletion of endogenous Tau proteins is not detrimental in Drosophila. Scientific Reports, 2016, 6, 23102.	1.6	38
29	Regulation of the one carbon folate cycle as a shared metabolic signature of longevity. Nature Communications, 2021, 12, 3486.	5. 8	37
30	Longevity in response to lowered insulin signaling requires glycine Nâ€methyltransferaseâ€dependent spermidine production. Aging Cell, 2020, 19, e13043.	3.0	33
31	Mutations of mitochondrial DNA are not major contributors to aging of fruit flies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9620-E9629.	3.3	32
32	<i>curled</i> Encodes the Drosophila Homolog of the Vertebrate Circadian Deadenylase Nocturnin. Genetics, 2009, 183, 219-232.	1.2	30
33	A neuronal blood marker is associated with mortality in old age. Nature Aging, 2021, 1, 218-225.	5.3	30
34	Pseudo-acetylation of multiple sites on human Tau proteins alters Tau phosphorylation and microtubule binding, and ameliorates amyloid beta toxicity. Scientific Reports, 2017, 7, 9984.	1.6	29
35	Sestrin is a key regulator of stem cell function and lifespan in response to dietary amino acids. Nature Aging, 2021, 1, 60-72.	5.3	23
36	Enhanced insulin signalling ameliorates C9orf72 hexanucleotide repeat expansion toxicity in Drosophila. ELife, $2021,10,10$	2.8	18

#	Article	IF	CITATION
37	Glycine-alanine dipeptide repeats spread rapidly in a repeat length- and age-dependent manner in the fly brain. Acta Neuropathologica Communications, 2019, 7, 209.	2.4	17
38	Loss of miR-210 leads to progressive retinal degeneration in (i>Drosophila melanogaster (li>. Life Science Alliance, 2019, 2, e201800149.	1.3	16
39	The Functions of Insulin-like Peptides in Insects. Research and Perspectives in Endocrine Interactions, 2010, , 105-124.	0.2	15
40	Hormone-sensitive lipase couples intergenerational sterol metabolism to reproductive success. ELife, $2021, 10, .$	2.8	14
41	Tissue-specific modulation of gene expression in response to lowered insulin signalling in Drosophila. ELife, 2021, 10, .	2.8	12
42	Hepatic gene body hypermethylation is a shared epigenetic signature of murine longevity. PLoS Genetics, 2018, 14, e1007766.	1.5	8
43	The Role of GCN2 Kinase in Mediating the Effects of Amino Acids on Longevity and Feeding Behaviour in Drosophila. Frontiers in Aging, 0, 3, .	1.2	8
44	A NOVEL MODEL OF GBA1-ASSOCIATED PARKINSON'S DISEASE IMPLICATES AUTOPHAGY. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, e1.68-e1.	0.9	0