
Rebecca Chaplin-Kramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3132581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conservation needs to integrate knowledge across scales. Nature Ecology and Evolution, 2022, 6, 118-119.	3.4	40
2	Co-benefits of forest carbon projects in Southeast Asia. Nature Sustainability, 2022, 5, 393-396.	11.5	11
3	Carbon stocks in a highly fragmented landscape with seasonally dry tropical forest in the Neotropics. Forest Ecosystems, 2022, 9, 100016.	1.3	2
4	Biodiversity and infrastructure interact to drive tourism to and within Costa Rica. Proceedings of the United States of America, 2022, 119, e2107662119.	3.3	19
5	Increasing decision relevance of ecosystem service science. Nature Sustainability, 2021, 4, 161-169.	11.5	108
6	Landscape simplification increases vineyard pest outbreaks and insecticide use. Ecology Letters, 2021, 24, 73-83.	3.0	56
7	Ecosystem services and the resilience of agricultural landscapes. Advances in Ecological Research, 2021, , 1-43.	1.4	33
8	Modeling Integrated Impacts of Climate Change and Grazing on Mongolia's Rangelands. Land, 2021, 10, 397.	1.2	5
9	Models of natural pest control: Towards predictions across agricultural landscapes. Biological Control, 2021, 163, 104761.	1.4	22
10	Challenges in producing policy-relevant global scenarios of biodiversity and ecosystem services. Global Ecology and Conservation, 2020, 22, e00886.	1.0	17
11	Set ambitious goals for biodiversity and sustainability. Science, 2020, 370, 411-413.	6.0	225
12	Species traits elucidate crop pest response to landscape composition: a global analysis. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202116.	1.2	30
13	Global synthesis of effects of plant species diversity on trophic groups and interactions. Nature Plants, 2020, 6, 503-510.	4.7	83
14	Closing yield gap is crucial to avoid potential surge in global carbon emissions. Global Environmental Change, 2020, 63, 102100.	3.6	39
15	Measuring What Matters: Actionable Information for Conservation Biocontrol in Multifunctional Landscapes. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	34
16	Mapping Ecosystem Services to Human Wellâ€being: a toolkit to support integrated landscape management for the SDGs. Ecological Applications, 2019, 29, e01985.	1.8	34
17	Greenhouse gas footprints of palm oil production in Indonesia over space and time. Science of the Total Environment, 2019, 688, 827-837.	3.9	42
18	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	4.7	524

#	Article	IF	CITATIONS
19	Global modeling of nature's contributions to people. Science, 2019, 366, 255-258.	6.0	279
20	Determining the value of ecosystem services in agriculture. , 2019, , 60-89.		2
21	Natural habitat increases natural pest control in olive groves: economic implications. Journal of Pest Science, 2019, 92, 1111-1121.	1.9	25
22	Reimagining the potential of Earth observations for ecosystem service assessments. Science of the Total Environment, 2019, 665, 1053-1063.	3.9	39
23	A coupled forage-grazer model predicts viability of livestock production and wildlife habitat at the regional scale. Scientific Reports, 2019, 9, 19957.	1.6	6
24	Existing Accessible Modeling Tools Offer Limited Support to Evaluation of Impact Investment in Rangeland Ecosystem Services. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	1
25	Market-Based Mechanisms. , 2019, , 141-164.		1
26	FIFTEEN. Introduction to Concepts of Biodiversity, Ecosystem Functioning, Ecosystem Services, and Natural Capital. , 2019, , 265-284.		0
27	Response to Kabisch and Colleagues. BioScience, 2018, 68, 167-168.	2.2	0
28	Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosystem Services, 2018, 29, 70-82.	2.3	339
29	A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 2018, 11, 4537-4562.	1.3	61
30	Consequences of integrating livestock and wildlife in an African savanna. Nature Sustainability, 2018, 1, 566-573.	11.5	40
31	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	3.3	401
32	Bright spots in agricultural landscapes: Identifying areas exceeding expectations for multifunctionality and biodiversity. Journal of Applied Ecology, 2018, 55, 2731-2743.	1.9	35
33	Priorities to Advance Monitoring of Ecosystem Services Using Earth Observation. Trends in Ecology and Evolution, 2017, 32, 416-428.	4.2	107
34	Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services. Nature Communications, 2017, 8, 15065.	5.8	69
35	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	4.2	259
36	Social and ecological analysis of commercial integrated crop livestock systems: Current knowledge and remaining uncertainty. Agricultural Systems, 2017, 155, 136-146.	3.2	114

#	Article	IF	CITATIONS
37	Ecosystem Services. , 2017, , 39-78.		19
38	When, Where, and How Nature Matters for Ecosystem Services: Challenges for the Next Generation of Ecosystem Service Models. BioScience, 2017, 67, 820-833.	2.2	114
39	Can integrating wildlife and livestock enhance ecosystem services in central Kenya?. Frontiers in Ecology and the Environment, 2017, 15, 328-335.	1.9	54
40	Society Is Ready for a New Kind of Science—Is Academia?. BioScience, 2017, 67, 591-592.	2.2	54
41	The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains. Sustainability, 2017, 9, 279.	1.6	78
42	Lifting the Information Barriers to Address Sustainability Challenges with Data from Physical Geography and Earth Observation. Sustainability, 2017, 9, 858.	1.6	25
43	Science for the sustainable use of ecosystem services. F1000Research, 2016, 5, 2622.	0.8	36
44	Landscape configuration is the primary driver of impacts on water quality associated with agricultural expansion. Environmental Research Letters, 2016, 11, 074012.	2.2	37
45	Agricultural ecosystems and their services: the vanguard of sustainability?. Current Opinion in Environmental Sustainability, 2016, 23, 92-99.	3.1	88
46	When natural habitat fails to enhance biological pest control – Five hypotheses. Biological Conservation, 2016, 204, 449-458.	1.9	388
47	Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agriculture, Ecosystems and Environment, 2016, 221, 198-204.	2.5	393
48	Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Science of the Total Environment, 2016, 540, 63-70.	3.9	265
49	Ecosystem service information to benefit sustainability standards for commodity supply chains. Annals of the New York Academy of Sciences, 2015, 1355, 77-97.	1.8	21
50	Degradation in carbon stocks near tropical forest edges. Nature Communications, 2015, 6, 10158.	5.8	149
51	Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7402-7407.	3.3	205
52	Natural capital and ecosystem services informing decisions: From promise to practice. Proceedings of the United States of America, 2015, 112, 7348-7355.	3.3	717
53	A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Science of the Total Environment, 2015, 524-525, 166-177.	3.9	196
54	Sensitivity analysis of a sediment dynamics model applied in a Mediterranean river basin: Global change and management implications. Science of the Total Environment, 2015, 502, 602-610.	3.9	38

REBECCA CHAPLIN-KRAMER

#	Article	IF	CITATIONS
55	Global malnutrition overlaps with pollinator-dependent micronutrient production. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141799.	1.2	124
56	Detecting pest control services across spatial and temporal scales. Agriculture, Ecosystems and Environment, 2013, 181, 206-212.	2.5	87
57	Effects of Climate Change on Range Forage Production in the San Francisco Bay Area. PLoS ONE, 2013, 8, e57723.	1.1	27
58	Pest control experiments show benefits of complexity at landscape and local scales. Ecological Applications, 2012, 22, 1936-1948.	1.8	106
59	Value of Wildland Habitat for Supplying Pollination Services to Californian Agriculture. Rangelands, 2011, 33, .	0.9	0
60	Value of Wildland Habitat for Supplying Pollination Services to Californian Agriculture. Rangelands, 2011, 33, 33-41.	0.9	52
61	A metaâ€∎nalysis of crop pest and natural enemy response to landscape complexity. Ecology Letters, 2011, 14, 922-932.	3.0	745
62	Chemically mediated tritrophic interactions: opposing effects of glucosinolates on a specialist herbivore and its predators. Journal of Applied Ecology, 2011, 48, 880-887.	1.9	57
63	Warming and elevated CO ₂ affect the relationship between seed mass, germinability and seedling growth in <i>Austrodanthonia caespitosa</i> , a dominant Australian grass. Clobal Change Biology, 2008, 14, 1633-1641.	4.2	75
64	Flowering, seed production and seed mass in a species-rich temperate grassland exposed to FACE and warming. Australian Journal of Botany, 2007, 55, 780.	0.3	26
65	Where should livestock graze? Integrated modeling and optimization to guide grazing management in the Cañete basin, Peru. Socio-Environmental Systems Modeling, 0, 1, 16125.	0.0	1