Gennady Sergienko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3132566/publications.pdf

Version: 2024-02-01

231 papers

5,352 citations

39 h-index 58 g-index

232 all docs 232 docs citations

times ranked

232

2452 citing authors

#	Article	IF	CITATIONS
1	Disruption mitigation by massive gas injection in JET. Nuclear Fusion, 2011, 51, 123010.	1.6	148
2	Linear Plasma Device PSI-2 for Plasma-Material Interaction Studies. Fusion Science and Technology, 2015, 68, 8-14.	0.6	139
3	Tokamak operation with high-Zplasma facing components. Plasma Physics and Controlled Fusion, 2005, 47, B207-B222.	0.9	102
4	Development of laser-based techniques for <i>in situ</i> characterization of the first wall in ITER and future fusion devices. Nuclear Fusion, 2013, 53, 093002.	1.6	99
5	Flux dependence of carbon chemical erosion by deuterium ions. Nuclear Fusion, 2004, 44, L21-L25.	1.6	97
6	Dust particles in controlled fusion devices: morphology, observations in the plasma and influence on the plasma performance. Nuclear Fusion, 2001, 41, 1087-1099.	1.6	96
7	Diagnostic mirrors for ITER: A material choice and the impact of erosion and deposition on their performance. Journal of Nuclear Materials, 2007, 363-365, 1395-1402.	1.3	94
8	Impact of carbon and tungsten as divertor materials on the scrape-off layer conditions in JET. Nuclear Fusion, 2013, 53, 093016.	1.6	91
9	Flux dependence of carbon erosion and implication for ITER. Journal of Nuclear Materials, 2005, 337-339, 970-974.	1.3	90
10	Characterization of the deuterium recycling flux in front of a graphite surface in the TEXTOR tokamak. Plasma Physics and Controlled Fusion, 2005, 47, 615-634.	0.9	87
11	ELM-induced transient tungsten melting in the JET divertor. Nuclear Fusion, 2015, 55, 023010.	1.6	83
12	Liquid metals as alternative solution for the power exhaust of future fusion devices: status and perspective. Physica Scripta, 2014, T159, 014037.	1.2	82
13	Identification and analysis of transport domains in the stochastic boundary of TEXTOR-DED for different mode spectra. Nuclear Fusion, 2008, 48, 024009.	1.6	80
14	Impact of the ITER-like wall on divertor detachment and on the density limit in the JET tokamak. Journal of Nuclear Materials, 2013, 438, S139-S147.	1.3	76
15	Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification. Nuclear Fusion, 2017, 57, 116041.	1.6	75
16	Toroidal Plasma Rotation Induced by the Dynamic Ergodic Divertor in the TEXTOR Tokamak. Physical Review Letters, 2005, 94, 015003.	2.9	73
17	Diagnostics for plasma control – From ITER to DEMO. Fusion Engineering and Design, 2019, 146, 465-472.	1.0	71
18	The impact of the ITER-like wall at JET on disruptions. Plasma Physics and Controlled Fusion, 2012, 54, 124032.	0.9	70

#	Article	IF	CITATIONS
19	Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten. Physica Scripta, 2014, T159, 014005.	1.2	65
20	Limiter Lock Systems at TEXTOR: Flexible Tools for Plasma-Wall Investigation. Fusion Science and Technology, 2005, 47, 138-145.	0.6	62
21	In situ measurement and modeling of hydrogen recycling and transport processes – the role of molecules. Journal of Nuclear Materials, 1999, 266-269, 138-145.	1.3	60
22	Erosion, screening, and migration of tungsten in the JET divertor. Nuclear Fusion, 2019, 59, 096035.	1.6	60
23	Melt damage to the JET ITER-like Wall and divertor. Physica Scripta, 2016, T167, 014070.	1.2	58
24	Density limits in TEXTOR-94 auxiliary heated discharges. Nuclear Fusion, 1999, 39, 765-776.	1.6	56
25	Tungsten melt layer motion and splashing on castellated tungsten surfaces at the tokamak TEXTOR. Journal of Nuclear Materials, 2011, 415, S78-S82.	1.3	53
26	ELM induced tungsten melting and its impact on tokamak operation. Journal of Nuclear Materials, 2015, 463, 78-84.	1.3	53
27	Upgrade of the infrared camera diagnostics for the JET ITER-like wall divertor. Review of Scientific Instruments, 2012, 83, 10D530.	0.6	52
28	Experience with bulk tungsten test-limiters under high heat loads: melting and melt layer propagation. Physica Scripta, 2007, T128, 81-86.	1.2	51
29	Development of a mirror-based endoscope for divertor spectroscopy on JET with the new ITER-like wall (invited). Review of Scientific Instruments, 2012, 83, 10D511.	0.6	49
30	Investigations of single crystal and polycrystalline metal mirrors under erosion conditions in TEXTOR. Fusion Engineering and Design, 2007, 82, 123-132.	1.0	48
31	Effect of surface roughness and substrate material on carbon erosion and deposition in the TEXTOR tokamak. Plasma Physics and Controlled Fusion, 2008, 50, 095008.	0.9	47
32	Determination of rate coefficients for fusion-relevant atoms and molecules by modelling and measurement in the boundary layer of TEXTOR. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 144017.	0.6	47
33	A protection system for the JET ITER-like wall based on imaging diagnostics. Review of Scientific Instruments, 2012, 83, 10D727.	0.6	47
34	Experiments with tungsten limiters in TEXTOR-94. Journal of Nuclear Materials, 1998, 258-263, 858-864.	1.3	46
35	Localized recycling as a trigger of MARFE. Journal of Nuclear Materials, 1999, 266-269, 958-962.	1.3	46
36	Tungsten spectroscopy for the measurement of W-fluxes from plasma facing components. Plasma Physics and Controlled Fusion, 2007, 49, 1833-1847.	0.9	45

#	Article	IF	Citations
37	Impact of combined hydrogen plasma and transient heat loads on the performance of tungsten as plasma facing material. Nuclear Fusion, 2015, 55, 123017.	1.6	44
38	Operation of TEXTOR-94 with tungsten poloidal main limiters. Journal of Nuclear Materials, 2001, 290-293, 947-952.	1.3	42
39	Recent results on Ion Cyclotron Wall Conditioning in mid and large size tokamaks. Journal of Nuclear Materials, 2011, 415, S1021-S1028.	1.3	41
40	Erosion of a tungsten limiter under high heat flux in TEXTOR. Journal of Nuclear Materials, 2007, 363-365, 96-100.	1.3	38
41	Exposure of tungsten nano-structure to TEXTOR edge plasma. Journal of Nuclear Materials, 2011, 415, S92-S95.	1.3	38
42	Progress in understanding halo current at JET. Nuclear Fusion, 2009, 49, 055012.	1.6	37
43	On the measurement of molecular particle fluxes in fusion boundary plasmas. Journal of Nuclear Materials, 2003, 313-316, 967-971.	1.3	36
44	Critical heat flux loading experiments on CVD-W coating in the TEXTOR tokamak. Fusion Engineering and Design, 2006, 81, 175-180.	1.0	36
45	Hydrogen release from plasma-facing components into fusion plasmas - recent results from a spectroscopic approach. Plasma Physics and Controlled Fusion, 2001, 43, A349-A373.	0.9	35
46	ICRF specific plasma wall interactions in JET with the ITER-like wall. Journal of Nuclear Materials, 2013, 438, S160-S165.	1.3	35
47	The dynamic ergodic divertor in the TEXTOR tokamak: plasma response to dynamic helical magnetic field perturbations. Plasma Physics and Controlled Fusion, 2004, 46, B143-B155.	0.9	34
48	Exposure of metal mirrors in the scrape-off layer of TEXTOR. Journal of Nuclear Materials, 2005, 337-339, 1116-1120.	1.3	32
49	Transport and divertor properties of the dynamic ergodic divertor. Plasma Physics and Controlled Fusion, 2005, 47, B237-B248.	0.9	32
50	Fuel removal from plasma-facing components by oxidation-based techniques. An overview of surface conditions after oxidation. Journal of Nuclear Materials, 2007, 363-365, 877-881.	1.3	32
51	Investigations of castellated structures for ITER: The effect of castellation shaping and alignment on fuel retention and impurity deposition in gaps. Journal of Nuclear Materials, 2009, 390-391, 556-559.	1.3	32
52	In situ characterisation of hydrocarbon layers in TEXTOR by laser induced ablation and laser induced breakdown spectroscopy. Journal of Nuclear Materials, 2011, 415, S1195-S1198.	1.3	32
53	Removal of carbon layers by oxygen glow discharges in TEXTOR. Journal of Nuclear Materials, 2007, 363-365, 929-932.	1.3	31
54	Study of the feasibility of applying laser-induced breakdown spectroscopy for <i>in-situ</i> characterization of deposited layers in fusion devices. Physica Scripta, 2011, T145, 014028.	1.2	31

#	Article	IF	Citations
55	Application of laser-induced breakdown spectroscopy for characterization of material deposits and tritium retention in fusion devices. Fusion Engineering and Design, 2013, 88, 1813-1817.	1.0	31
56	Monitoring of tritium and impurities in the first wall of fusion devices using a LIBS based diagnostic. Nuclear Fusion, 2021, 61, 125001.	1.6	31
57	Investigation of carbon transport by 13CH4 injection through graphite and tungsten test limiters in TEXTOR. Plasma Physics and Controlled Fusion, 2006, 48, 1401-1412.	0.9	29
58	MARFE feedback experiments on TEXTOR-94. Journal of Nuclear Materials, 1999, 266-269, 666-672.	1.3	28
59	Theoretical investigation of crack formation in tungsten after heat loads. Journal of Nuclear Materials, 2015, 463, 246-249.	1.3	28
60	Characterisation of the deuterium recycling at the W divertor target plates in JET during steady-state plasma conditions and ELMs. Physica Scripta, 2016, T167, 014076.	1.2	27
61	Influence of helium induced nanostructures on the thermal shock performance of tungsten. Nuclear Materials and Energy, 2016, 9, 177-180.	0.6	27
62	Survey of dust formed in the TEXTOR tokamak: structure and fuel retention. Physica Scripta, 2009, T138, 014025.	1.2	26
63	Simulation of ITER full-field ICWC scenario in JET: RF physics aspects. Plasma Physics and Controlled Fusion, 2012, 54, 074014.	0.9	26
64	In-situ analysis of the first wall by laser-induced breakdown spectroscopy in the TEXTOR tokamak: Dependence on the magnetic field strength. Journal of Nuclear Materials, 2015, 463, 911-914.	1.3	26
65	Molecular and Atomic Deuterium in the Plasma Edge of TEXTOR-94. Contributions To Plasma Physics, 2002, 42, 668-674.	0.5	25
66	Chemical Erosion Measurements in Tokamaks by Spectroscopy. Physica Scripta, 2004, T111, 42.	1.2	25
67	First results from the dynamic ergodic divertor at TEXTOR. Journal of Nuclear Materials, 2005, 337-339, 171-175.	1.3	25
68	Study of local carbon transport on graphite, tungsten and molybdenum test limiters in TEXTOR by 13CH4 tracer injection. Journal of Nuclear Materials, 2007, 363-365, 179-183.	1.3	25
69	Carbon transport, deposition and fuel accumulation in castellated structures exposed in TEXTOR. Journal of Nuclear Materials, 2007, 367-370, 1481-1486.	1.3	25
70	Influence of the Dynamic Ergodic Divertor on the Density Limit in TEXTOR. Physical Review Letters, 2005, 94, 105003.	2.9	24
71	Modelling of tungsten erosion and deposition in the divertor of JET-ILW in comparison to experimental findings. Nuclear Materials and Energy, 2019, 18, 239-244.	0.6	24
72	The effect of field reversal on the JET MkIIGB-SRP divertor performance in L-mode density limit discharges. Journal of Nuclear Materials, 2005, 337-339, 241-245.	1.3	23

#	Article	IF	CITATIONS
73	In situ diagnostic for monitoring of deuterium and tritium in re-deposited carbon layers by laser induced desorption. Journal of Nuclear Materials, 2007, 363-365, 1375-1379.	1.3	23
74	RF sheath-enhanced beryllium sources at JET's ICRH antennas. Journal of Nuclear Materials, 2013, 438, S594-S598.	1.3	23
75	Investigation of the Impact on Tungsten of Transient Heat Loads Induced by Laser Irradiation, Electron Beams and Plasma Guns. Fusion Science and Technology, 2013, 63, 197-200.	0.6	23
76	Overview of wall probes for erosion and deposition studies in the TEXTOR tokamak. Matter and Radiation at Extremes, 2017, 2, 87-104.	1.5	23
77	Heat load measurements on the JET first wall during disruptions. Journal of Nuclear Materials, 2011, 415, S817-S820.	1.3	22
78	Testing of Tungsten and Tantalum Limiters at the TEXTOR Tokamak: Material Performance and Deuterium Retention. Physica Scripta, 2003, T103, 59.	1.2	21
79	0D model of magnetized hydrogen–helium wall conditioning plasmas. Plasma Physics and Controlled Fusion, 2011, 53, 125003.	0.9	21
80	Operational limits under different wall conditions on TEXTOR-94. Journal of Nuclear Materials, 2001, 290-293, 1148-1154.	1.3	20
81	Deuterium release and microstructure of tantalum–tungsten twin limiter exposed in TEXTOR-94. Journal of Nuclear Materials, 2002, 307-311, 79-83.	1.3	20
82	Plasma Edge Diagnostics for TEXTOR. Fusion Science and Technology, 2005, 47, 209-219.	0.6	20
83	ICRF physics aspects of wall conditioning with conventional antennas in large-size tokamaks. Journal of Nuclear Materials, 2011, 415, S1029-S1032.	1.3	20
84	Overview of material migration and mixing, fuel retention and cleaning of ITER-like castellated structures in TEXTOR. Journal of Nuclear Materials, 2011, 415, S289-S292.	1.3	20
85	Spectroscopic determination of inverse photon efficiencies of W atoms in the scrape-off layer of TEXTOR. Physica Scripta, 2017, T170, 014052.	1.2	20
86	High pulse number thermal shock tests on tungsten with steady state particle background. Physica Scripta, 2017, T170, 014066.	1.2	20
87	Experimental investigations of castellated monoblock structures in TEXTOR. Journal of Nuclear Materials, 2005, 337-339, 917-921.	1.3	19
88	Overview of Experiments with the Dynamic Ergodic Divertor on TEXTOR. Contributions To Plasma Physics, 2006, 46, 515-526.	0.5	19
89	Characterization of transport in the stochastic edge layer of TEXTOR by analysis of the radial and poloidal distribution of electron density and temperature. Journal of Nuclear Materials, 2007, 363-365, 680-685.	1.3	19
90	Effects of tungsten surface conditions on carbon deposition. Journal of Nuclear Materials, 2009, 390-391, 44-48.	1.3	19

#	Article	IF	Citations
91	Modelling of the JET current ramp-up experiments and projection to ITER. Plasma Physics and Controlled Fusion, 2010, 52, 105011.	0.9	19
92	JET divertor diagnostic upgrade for neutral gas analysis. Review of Scientific Instruments, 2012, 83, 10D728.	0.6	19
93	Dust investigations in TEXTOR: Impact of dust on plasma–wall interactions and on plasma performance. Journal of Nuclear Materials, 2013, 438, S126-S132.	1.3	19
94	Spectroscopic studies of stationary MARFEs in TEXTOR-94. Journal of Nuclear Materials, 2001, 290-293, 720-724.	1.3	18
95	Performance and erosion of a tungsten brush limiter exposed at the TEXTOR tokamak. Journal of Nuclear Materials, 2003, 313-316, 67-71.	1.3	18
96	Formation of HD Molecules in the Boundary Layer of TEXTOR. Physica Scripta, 2003, T103, 63.	1.2	18
97	Radiation loads onto plasma-facing components of JET during transient events – Experimental results and implications for ITER. Journal of Nuclear Materials, 2011, 415, S821-S827.	1.3	18
98	Fast camera observations of injected and intrinsic dust in TEXTOR. Plasma Physics and Controlled Fusion, 2015, 57, 125017.	0.9	18
99	Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall. Journal of Nuclear Materials, 2019, 516, 202-213.	1.3	18
100	Light emission from carbon-based materials under ITER relevant thermal shock loads. Journal of Nuclear Materials, 2003, 321, 110-114.	1.3	17
101	Plasma-induced damage of tungsten coatings on graphite limiters. Physica Scripta, 2007, T128, 162-165.	1.2	17
102	In situ detection of hydrogen retention in TEXTOR by laser induced desorption. Journal of Nuclear Materials, 2009, 390-391, 576-580.	1.3	17
103	A wide angle view imaging diagnostic with all reflective, in-vessel optics at JET. Fusion Engineering and Design, 2013, 88, 1342-1346.	1.0	17
104	Simulation calculations of mutual contamination between tungsten and carbon and its impact on plasma surface interactions. Journal of Nuclear Materials, 2001, 290-293, 303-307.	1.3	16
105	Material mixing on plasma-facing components: Compound formation. Journal of Nuclear Materials, 2009, 386-388, 740-743.	1.3	16
106	Plasma radiation distribution and radiation loads onto the vessel during transient events in JET. Journal of Nuclear Materials, 2009, 390-391, 830-834.	1.3	16
107	Isotope exchange experiments on TEXTOR and TORE SUPRA using Ion Cyclotron Wall Conditioning and Glow Discharge Conditioning. Journal of Nuclear Materials, 2011, 415, S1033-S1036.	1.3	16
108	Supersonic helium beam diagnostic for fluctuation measurements of electron temperature and density at the Tokamak TEXTOR. Review of Scientific Instruments, 2012, 83, 065107.	0.6	16

#	Article	IF	CITATIONS
109	Target particle and heat loads in low-triangularity L-mode plasmas in JET with carbon and beryllium/tungsten walls. Journal of Nuclear Materials, 2013, 438, S175-S179.	1.3	16
110	Isotope exchange by Ion Cyclotron Wall Conditioning on JET. Journal of Nuclear Materials, 2015, 463, 1104-1108.	1.3	16
111	Combined impact of transient heat loads and steady-state plasma exposure on tungsten. Fusion Engineering and Design, 2015, 98-99, 1328-1332.	1.0	16
112	Μicro-structured tungsten: an advanced plasma-facing material. Nuclear Materials and Energy, 2019, 19, 7-12.	0.6	16
113	Determination of tungsten sources in the JET-ILW divertor by spectroscopic imaging in the presence of a strong plasma continuum. Nuclear Materials and Energy, 2019, 18, 118-124.	0.6	16
114	Optical Coatings as Mirrors for Optical Diagnostics. Journal of Coating Science and Technology, 2016, 2, 72-78.	0.3	16
115	Comparison of impurity production, recycling and power deposition on carbon and tungsten limiters in TEXTOR-94. Journal of Nuclear Materials, 2001, 290-293, 276-280.	1.3	15
116	Tomographic reconstruction of 2D line radiation distribution in the JET MkIIGB divertor. Journal of Nuclear Materials, 2003, 313-316, 925-930.	1.3	15
117	Influence of toroidal and vertical magnetic fields on Ion Cyclotron Wall Conditioning in tokamaks. Journal of Nuclear Materials, 2009, 390-391, 907-910.	1.3	15
118	Moderation of target loads using fuelling and impurity seeding on JET. Journal of Nuclear Materials, 2011, 415, S313-S317.	1.3	15
119	Fuel retention in impurity seeded discharges in JET after Be evaporation. Nuclear Fusion, 2011, 51, 073007.	1.6	15
120	Hydrogen retention in tungsten materials studied by Laser Induced Desorption. Journal of Nuclear Materials, 2013, 438, S1155-S1159.	1.3	15
121	Self-consistent application of ion cyclotron wall conditioning for co-deposited layer removal and recovery of tokamak operation on TEXTOR. Nuclear Fusion, 2013, 53, 123001.	1.6	15
122	Laser-Induced Desorption of co-deposited Deuterium in Beryllium Layers on Tungsten. Nuclear Materials and Energy, 2019, 19, 503-509.	0.6	15
123	Molecular deuterium sources in the outer divertor of JET. Journal of Nuclear Materials, 2005, 337-339, 500-504.	1.3	14
124	Laser desorption of deuterium retained in re-deposited carbon layers at TEXTOR and JET. Journal of Nuclear Materials, 2005, 337-339, 570-574.	1.3	14
125	The impact of divertor detachment on carbon sources in JET L-mode discharges. Journal of Nuclear Materials, 2009, 390-391, 267-273.	1.3	14
126	lon cyclotron wall conditioning in reactive gases on TEXTOR. Journal of Nuclear Materials, 2009, 390-391, 979-982.	1.3	14

#	Article	IF	CITATIONS
127	Thermal analysis of an exposed tungsten edge in the JET divertor. Journal of Nuclear Materials, 2015, 463, 415-419.	1.3	14
128	Real-time protection of the JET ITER-like wall based on near infrared imaging diagnostic systems. Nuclear Fusion, 2018, 58, 106021.	1.6	14
129	Quantification of erosion pattern using picosecond-LIBS on a vertical divertor target element exposed in W7-X. Nuclear Fusion, 2021, 61, 016025.	1.6	14
130	In-Situ Measurement of Trapped Hydrogen by Laser Desorption in TEXTOR-94. Physica Scripta, 2001, T94, 102.	1.2	13
131	An overview of fuel retention and morphology in a castellated tungsten limiter. Fusion Engineering and Design, 2008, 83, 1049-1053.	1.0	13
132	Movement of liquid beryllium during melt events in JET with ITER-like wall. Physica Scripta, 2014, T159, 014041.	1,2	13
133	Analysis and removal of ITER relevant materials and deposits by laser ablation. Journal of Nuclear Materials, 2014, 455, 180-184.	1.3	13
134	Time resolved imaging of laser induced ablation spectroscopy (LIAS) in TEXTOR and comparison with modeling. Physica Scripta, 2016, T167, 014034.	1,2	13
135	Comparative H-mode density limit studies in JET and AUG. Nuclear Materials and Energy, 2017, 12, 100-110.	0.6	13
136	Neutral gas analysis for JET DT operation. Journal of Instrumentation, 2020, 15, C01032-C01032.	0.5	13
137	New scenarios of ICRF wall conditioning in TEXTOR and ASDEX Upgrade. Journal of Nuclear Materials, 2007, 363-365, 1358-1363.	1.3	12
138	Sequential and simultaneous thermal and particle exposure of tungsten. Physica Scripta, 2016, T167, 014053.	1.2	12
139	Plasma–surface interaction in the stellarator W7-X: conclusions drawn from operation with graphite plasma-facing components. Nuclear Fusion, 2022, 62, 016006.	1.6	12
140	Development of Thick B4C Coatings for the First Wall of W7-X. Physica Scripta, 2001, T91, 117.	1,2	11
141	Spectroscopic observation of Si I- and Si II-emission lines in the boundary of TEXTOR and comparison with kinetic calculations. Plasma Physics and Controlled Fusion, 2003, 45, 89-103.	0.9	11
142	Particle Release from Carbon Based Materials under Intense Transient Heat Loads. Physica Scripta, 2004, T111, 163.	1.2	11
143	Local effects of gas fuelling and their impact on transport processes in the plasma edge of the tokamak TEXTOR. Journal of Nuclear Materials, 2005, 337-339, 515-519.	1.3	11
144	Nitrogen-assisted removal of deuterated carbon layers. Journal of Nuclear Materials, 2009, 390-391, 647-650.	1.3	11

#	Article	IF	Citations
145	Deposition and qualification of tungsten coatings produced by plasma deposition in WF ₆ precursor gas. Physica Scripta, 2011, T145, 014030.	1.2	11
146	A new radiation-hard endoscope for divertor spectroscopy on JET. Fusion Engineering and Design, 2013, 88, 1361-1365.	1.0	11
147	Spectroscopic characterisation of the PSI-2 plasma in the ionising and recombining state. Journal of Nuclear Materials, 2013, 438, S1249-S1252.	1.3	11
148	Ion beam analysis of tungsten layers in EUROFER model systems and carbon plasma facing components. Nuclear Instruments & Methods in Physics Research B, 2016, 371, 355-359.	0.6	11
149	Efficiency of laser-induced desorption of D from Be/D layers and surface modifications due to LID. Physica Scripta, 2020, T171, 014075.	1.2	11
150	Hydrogen Atom Velocities and Penetration Depths in Front of Graphite Surfaces in TEXTOR. Physica Scripta, 2003, T103, 51.	1.2	11
151	Experimental study on the role of the target electron temperature as a key parameter linking recycling to plasma performance in JET-ILW*. Nuclear Fusion, 2022, 62, 066030.	1.6	11
152	Molecular (H/D/T) sources in JET. Journal of Nuclear Materials, 2007, 363-365, 811-815.	1.3	10
153	Density limit of H-mode plasmas on JET-ILW. Journal of Nuclear Materials, 2015, 463, 445-449.	1.3	10
154	Design and development of a LIBS system on linear plasma device PSI-2 for in situ real-time diagnostics of plasma-facing materials. Nuclear Materials and Energy, 2017, 12, 1224-1230.	0.6	10
155	JUVIL: A new innovative software framework for data analysis of JET imaging systems intended for the study of plasma physics and machine operational safety. Fusion Engineering and Design, 2017, 123, 979-985.	1.0	10
156	Castellated structures for ITER: the influence of the shape of castellation on the impurity deposition and fuel accumulation in gaps. Physica Scripta, 2007, T128, 45-49.	1.2	10
157	Dust survey following the final shutdown of TEXTOR: metal particles and fuel retention. Physica Scripta, 2016, T167, 014059.	1.2	10
158	Active control of edge localized modes with a low n perturbation fields in the JET tokamak. Journal of Nuclear Materials, 2009, 390-391, 733-739.	1.3	9
159	In-vessel calibration of the imaging diagnostics for the real-time protection of the JET ITER-like wall. Review of Scientific Instruments, 2016, 87, 11D430.	0.6	9
160	Impact on the deuterium retention of simultaneous exposure of tungsten to a steady state plasma and transient heat cycling loads. Physica Scripta, 2016, T167, 014046.	1.2	9
161	The effect of the isotope on the H-mode density limit. Nuclear Fusion, 2017, 57, 086007.	1.6	9
162	Response of the imaging cameras to hard radiation during JET operation. Fusion Engineering and Design, 2017, 123, 669-673.	1.0	9

#	Article	IF	Citations
163	Fuel Retention Diagnostic Setup (FREDIS) for desorption of gases from beryllium and tritium containing samples. Fusion Engineering and Design, 2019, 146, 1176-1180.	1.0	9
164	The software and hardware architecture of the real-time protection of in-vessel components in JET-ILW. Nuclear Fusion, 2019, 59, 076016.	1.6	9
165	An upgraded LIBS system on linear plasma device PSI-2 for in situ diagnostics of plasma-facing materials. Fusion Engineering and Design, 2019, 146, 96-99.	1.0	9
166	B4C-limiter experiments at TEXTOR. Journal of Nuclear Materials, 2003, 313-316, 223-229.	1.3	8
167	Modeling of erosion and deposition patterns on C–W and W–Ta twin limiters exposed to the TEXTOR edge plasmas. Journal of Nuclear Materials, 2004, 329-333, 732-736.	1.3	8
168	Material and Power-Handling Properties of Tungsten PFCs after Steady-State Melting and Additional Transient High-Heat-Flux Exposure. Fusion Science and Technology, 2012, 61, 129-135.	0.6	8
169	Molecular deuterium behaviour in tungsten divertor on JET. Journal of Nuclear Materials, 2013, 438, S1100-S1103.	1.3	8
170	Material deposition on inner divertor quartz-micro balances during ITER-like wall operation in JET. Journal of Nuclear Materials, 2015, 463, 796-799.	1.3	8
171	The near infrared imaging system for the real-time protection of the JET ITER-like wall. Physica Scripta, 2017, T170, 014027. Chemically assisted physical sputtering of Tungsten: Identification via the <mml:math< td=""><td>1.2</td><td>8</td></mml:math<>	1.2	8
172	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:msup><mml:mrow /><mml:mn>6</mml:mn></mml:mrow </mml:msup><mml:mstyle mathvariant="normal"><mml:mi>í</mml:mi><mml:msup><mml:mo>â†'</mml:mo><mml:mn>6<td>0.6</td><td>8</td></mml:mn></mml:msup></mml:mstyle </mml:mrow>	0.6	8
173	mathvariant="normal"> <mml:mi>$\hat{1}$</mml:mi> <mml:mo>+</mml:mo> <td>0.5</td> <td>ath></td>	0.5	ath>
174	Castellated structures for ITER: Differences of impurity deposition and fuel accumulation in the toroidal and poloidal gaps. Journal of Nuclear Materials, 2009, 386-388, 809-812.	1.3	7
175	Using the Radiation of Hydrogen Atoms and Molecules to Determine Electron Density and Temperature in the Linear Plasma Device PSI-2. Fusion Science and Technology, 2013, 63, 201-204.	0.6	7
176	RF physics of ICWC discharge at high cyclotron harmonics. , 2014, , .		7
177	Deuterium retention in tungsten under combined high cycle ELM-like heat loads and steady-state plasma exposure. Nuclear Materials and Energy, 2016, 9, 157-164.	0.6	7
178	Quartz Crystal Microbalances for quantitative picosecond laser-material-interaction investigations – Part I: Technical considerations. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 126, 79-83.	1.5	7
179	Erosion and screening of tungsten during inter/intra-ELM periods in the JET-ILW divertor. Nuclear Materials and Energy, 2020, 25, 100859.	0.6	7
180	Simulation of hydrogen and hydrocarbon release from Wâ€"Ta and Wâ€"C twin test limiters in TEXTOR edge plasmas. Journal of Nuclear Materials, 2003, 313-316, 568-572.	1.3	6

#	Article	IF	CITATIONS
181	Deuterium retention in different carbon materials exposed in TEXTOR. Journal of Physics: Conference Series, 2008, 100, 062024.	0.3	6
182	Characterization of hydrocarbon and mixed layers in TEXTOR by laser induced ablation spectroscopy. Physica Scripta, 2011, T145, 014026.	1.2	6
183	Large ELM-like events triggered by core MHD in JET advanced tokamak plasmas: impact on plasmas profiles, plasma-facing components and heating systems. Nuclear Fusion, 2012, 52, 023018.	1.6	6
184	Impact of the JET ITER-like wall on H-mode plasma fueling. Nuclear Fusion, 2017, 57, 066024.	1.6	6
185	Quartz micro-balance results of pulse-resolved erosion/deposition in the JET-ILW divertor. Nuclear Materials and Energy, 2017, 12, 478-482.	0.6	6
186	Understanding tungsten erosion during inter/intra-ELM periods in He-dominated JET-ILW plasmas. Physica Scripta, 0, , .	1.2	6
187	Inhomogeneous heat loading to high-Z test limiters depending upon the limiter materials. Journal of Nuclear Materials, 2003, 313-316, 292-296.	1.3	5
188	Influence of Methane Fuelling on the 2-D Line Radiation Distribution in the JET MkIIGB Divertor. Physica Scripta, 2004, T111, 101.	1.2	5
189	Active control over carbon deposition on diagnostic components and in remote areas of ITER. Journal of Nuclear Materials, 2011, 417, 830-833.	1.3	5
190	Experimental investigation of ion cyclotron range of frequencies heating scenarios for ITER's half-field hydrogen phase performed in JET. Plasma Physics and Controlled Fusion, 2012, 54, 074008.	0.9	5
191	Operational issues at high lower hybrid power density in JET: waveguide conditioning and arc detection. Plasma Physics and Controlled Fusion, 2012, 54, 074002.	0.9	5
192	In situdeuterium inventory measurements of a-C:D layers on tungsten in TEXTOR by laser induced ablation spectroscopy. Physica Scripta, 2014, T159, 014054.	1.2	5
193	Improving accuracy of Penning gauge spectroscopy for the determination of hydrogen isotope H/D ratios. Fusion Engineering and Design, 2017, 123, 906-910.	1.0	5
194	Influence of the base temperature on the performance of tungsten under thermal and particle exposure. Nuclear Materials and Energy, 2017, 12, 1348-1351.	0.6	5
195	In situ study of short-term retention of deuterium in tungsten during and after plasma exposure in PSI-2. Nuclear Fusion, 2021, 61, 096006.	1.6	5
196	Long-term erosion and deposition studies of the main graphite limiter in TEXTOR. Physica Scripta, 2007, T128, 35-39.	1.2	5
197	Behaviour of Silicon-Doped CFC Limiter under High Heat Load in TEXTOR-94. Physica Scripta, 2001, T91, 61.	1.2	5
198	Double pulse laser-induced breakdown spectroscopy for the analysis of plasma-facing components. Physica Scripta, 2021, 96, 124064.	1.2	5

#	Article	IF	CITATIONS
199	Local emission and core concentration of tungsten in TEXTOR-94 plasmas operated with tungsten test and poloidal limiters. Journal of Nuclear Materials, 2001, 290-293, 768-772.	1.3	4
200	Massive gas injections in JET – Impact on wall conditions. Journal of Nuclear Materials, 2011, 415, S828-S831.	1.3	4
201	Modelling of deposition and erosion of injected WF6 and MoF6 in TEXTOR. Nuclear Materials and Energy, 2017, 12, 564-568.	0.6	4
202	The Influence of Impurities and Gas-Puff on MARFE Evolution in TEXTOR Tokamak. Contributions To Plasma Physics, 2004, 44, 274-280.	0.5	3
203	Engineering aspects of a fully mirrored endoscope. Fusion Engineering and Design, 2013, 88, 1400-1404.	1.0	3
204	Molecular Spectroscopy in TEXTOR. Contributions To Plasma Physics, 2000, 40, 162-166.	0.5	2
205	Study of the Relevance of Thermal Instability Caused by Impurity Radiation to MARFE Development in a Limiter Tokamak. Contributions To Plasma Physics, 2002, 42, 290-295.	0.5	2
206	Mixed and High-Z Plasma-Facing Materials in TEXTOR. Springer Series in Chemical Physics, 2005, , 319-333.	0.2	2
207	Exposure of reduced activation ferritic steel F82H to TEXTOR plasma. Fusion Engineering and Design, 2006, 81, 925-929.	1.0	2
208	The effect of the magnetic topology on particle recycling in the ergodic divertor of TEXTOR. Journal of Nuclear Materials, 2007, 363-365, 377-381.	1.3	2
209	Study of TEXTOR ICRF Antenna Coupling in the ICWC Mode of Operation. AIP Conference Proceedings, 2009, , .	0.3	2
210	ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines., 2009,,.		2
211	Micro-structured tungsten, a high heat flux pulse proof material. Nuclear Materials and Energy, 2020, 25, 100789.	0.6	2
212	Heat load to a tantalum–tungsten twin-test-limiter and the effect to high-Z core plasma concentration of TEXTOR-94. Journal of Nuclear Materials, 2002, 307-311, 149-153.	1.3	1
213	Studies of ICRF Discharge Conditioning (ICRF-DC) on ASDEX Upgrade, JET and TEXTOR. AIP Conference Proceedings, 2005, , .	0.3	1
214	Tungsten Spectroscopy for Fusion Plasmas. AIP Conference Proceedings, 2007, , .	0.3	1
215	Antenna coupling study for ICWC plasma characterization in TEXTOR. Pramana - Journal of Physics, 2013, 80, 121-131.	0.9	1
216	ICRF physics aspects of wall conditioning plasma characterization in TEXTOR. Fusion Engineering and Design, 2013, 88, 51-56.	1.0	1

#	Article	IF	CITATIONS
217	High heat-flux self-rotating plasma-facing component: Concept and loading test in TEXTOR. Journal of Nuclear Materials, 2015, 463, 1252-1255.	1.3	1
218	Experimental data on low energy electron impact ionisation of W. Physica Scripta, 2017, T170, 014075.	1.2	1
219	NEUTRON RADIATION DAMAGE IN CCD CAMERAS AT JOINT EUROPEAN TORUS (JET). Radiation Protection Dosimetry, 2018, 180, 109-114.	0.4	1
220	Modeling of Impurity Transport in the Divertor of JET. Plasma and Fusion Research, 2013, 8, 2402038-2402038.	0.3	1
221	Estimation of ELM effects on Be and W erosion at JET-ILW. Physica Scripta, 2020, T171, 014027.	1.2	1
222	Doppler Line Shapes, Turbulence and Neutral Transport in Tokamak Edge Plasmas. AIP Conference Proceedings, 2006, , .	0.3	0
223	A test of nitrogen-assisted plasma discharges for fuel removal from plasma-facing components in tokamaks. Journal of Physics: Conference Series, 2008, 100, 062027.	0.3	0
224	Impurity Radiation for Detecting Arcs during High Lower Hybrid Power Transmission at JET., 2009,,.		0
225	Impurity control in a tokamak edge plasma by a method of Doppler-free spectroscopy. Journal of Nuclear Materials, 2009, 390-391, 1123-1126.	1.3	0
226	Electron density and temperature measurements in TEXTOR ion cyclotron wall conditioning plasmas by thermal Li beam spectroscopy. Journal of Nuclear Materials, 2011, 415, S1166-S1169.	1.3	0
227	Melt-layer formation on PFMs and the consequences for the material performance. Nuclear Materials and Energy, 2016, 9, 153-156.	0.6	0
228	Hydrogen isotope ratios measurements by Penning gauge spectroscopy of molecular Fulcher- \hat{l}_{\pm} band. Fusion Engineering and Design, 2019, 146, 1325-1328.	1.0	0
229	Reversed-slit spectroscopy method for in situ measurement of H isotopes on plasma facing material. Journal of Instrumentation, 2020, 15, C01007-C01007.	0.5	0
230	Investigation of boron distribution and material migration on the W7-X divertor by picosecond LIBS. Physica Scripta, 2022, 97, 024005.	1.2	0
231	Short-term retention in metallic PFCs: modelling in view of mass spectrometry and LIBS. Physica Scripta, 2021, 96, 124079.	1.2	0