Andrew M Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3132307/publications.pdf

Version: 2024-02-01

38 papers 5,684 citations

257357 24 h-index 302012 39 g-index

40 all docs

40 docs citations

times ranked

40

6253 citing authors

#	Article	IF	CITATIONS
1	Designing peptide based nanomaterials. Chemical Society Reviews, 2008, 37, 664.	18.7	1,001
2	Fmocâ€Diphenylalanine Self Assembles to a Hydrogel via a Novel Architecture Based on π–π Interlocked βâ€Sheets. Advanced Materials, 2008, 20, 37-41.	11.1	855
3	Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials, 2009, 30, 2523-2530.	5.7	620
4	Enzyme-assisted self-assembly under thermodynamic control. Nature Nanotechnology, 2009, 4, 19-24.	15.6	492
5	Bioresponsive hydrogels. Materials Today, 2007, 10, 40-48.	8.3	418
6	Fmoc-Diphenylalanine Self-Assembly Mechanism Induces Apparent p <i>K</i> _a Shifts. Langmuir, 2009, 25, 9447-9453.	1.6	390
7	Decoding the secrets of spider silk. Materials Today, 2011, 14, 80-86.	8.3	279
8	Engineering nanoscale order into a designed protein fiber. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10853-10858.	3.3	234
9	An investigation of the conductivity of peptide nanotube networks prepared by enzyme-triggered self-assembly. Nanoscale, 2010, 2, 960.	2.8	139
10	Direct Observation of Oligomeric Species formed in the Early Stages of Amyloid Fibril Formation using Electrospray Ionisation Mass Spectrometry. Journal of Molecular Biology, 2006, 364, 9-19.	2.0	137
11	Three-dimensional cell culture of chondrocytes on modified di-phenylalanine scaffolds. Biochemical Society Transactions, 2007, 35, 535-537.	1.6	98
12	3D cell bioprinting of self-assembling peptide-based hydrogels. Materials Letters, 2017, 190, 103-106.	1.3	97
13	Engineering Increased Stability into Self-Assembled Protein Fibers. Advanced Functional Materials, 2006, 16, 1022-1030.	7.8	95
14	Controlling Self-Assembling Peptide Hydrogel Properties through Network Topology. Biomacromolecules, 2017, 18, 826-834.	2.6	94
15	Enzymatic Catalyzed Synthesis and Triggered Gelation of Ionic Peptides. Langmuir, 2010, 26, 11297-11303.	1.6	93
16	Recombinant Spider Silksâ€"Biopolymers with Potential for Future Applications. Polymers, 2011, 3, 640-661.	2.0	78
17	Polar Assembly in a Designed Protein Fiber. Angewandte Chemie - International Edition, 2005, 44, 325-328.	7.2	68
18	Biocatalytic self-assembly of 2D peptide-based nanostructures. Soft Matter, 2011, 7, 10032.	1.2	60

#	Article	IF	Citations
19	Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation. Biochemical Society Transactions, 2009, 37, 660-664.	1.6	57
20	Spider Silk. Progress in Molecular Biology and Translational Science, 2011, 103, 131-185.	0.9	47
21	Role of Sheet-Edge Interactions in \hat{l}^2 -sheet Self-Assembling Peptide Hydrogels. Biomacromolecules, 2020, 21, 2285-2297.	2.6	46
22	Modification of \hat{l}^2 -Sheet Forming Peptide Hydrophobic Face: Effect on Self-Assembly and Gelation. Langmuir, 2016, 32, 4917-4923.	1.6	44
23	Tuning of hydrogel stiffness using a twoâ€component peptide system for mammalian cell culture. Journal of Biomedical Materials Research - Part A, 2019, 107, 535-544.	2.1	32
24	Modeling the Three-Dimensional Bioprinting Process of \hat{l}^2 -Sheet Self-Assembling Peptide Hydrogel Scaffolds. Frontiers in Medical Technology, 2020, 2, 571626.	1.3	27
25	Controlling Doxorubicin Release from a Peptide Hydrogel through Fine-Tuning of Drug–Peptide Fiber Interactions. Biomacromolecules, 2022, 23, 2624-2634.	2.6	26
26	Functional Amyloids Used by Organisms: A Lesson in Controlling Assembly. Macromolecular Chemistry and Physics, 2010, 211, 127-135.	1.1	22
27	Self-assembly of a dual functional bioactive peptide amphiphile incorporating both matrix metalloprotease substrate and cell adhesion motifs. Soft Matter, 2015, 11, 3115-3124.	1.2	20
28	Ion and seed dependent fibril assembly of a spidroin core domain. Journal of Structural Biology, 2015, 191, 130-138.	1.3	20
29	Raman optical activity of an achiral element in a chiral environment. Journal of Raman Spectroscopy, 2009, 40, 1093-1095.	1.2	16
30	A self-assembling fluorescent dipeptide conjugate for cell labelling. Colloids and Surfaces B: Biointerfaces, 2016, 137, 104-108.	2.5	15
31	Data for ion and seed dependent fibril assembly of a spidroin core domain. Data in Brief, 2015, 4, 571-576.	0.5	12
32	Dissecting the Fine Details of Assembly of aT = 3 Phage Capsid. Journal of Theoretical Medicine, 2005, 6, 119-125.	0.5	10
33	Controlling Selfâ€Sorting versus Coâ€assembly in Supramolecular Gels. ChemSystemsChem, 2022, 4, .	1.1	8
34	Expression of recombinant horseradish peroxidase C in <i>Escherichia coli</i> li>. Biochemical Society Transactions, 1989, 17, 1077-1078.	1.6	7
35	Fibril Formation by Short Synthetic Peptides. Sub-Cellular Biochemistry, 2012, 65, 29-51.	1.0	6
36	Nanospheres from the self-assembly of an elastin-inspired triblock peptide. RSC Advances, 2015, 5, 95007-95013.	1.7	6

3

#	ŧ	Article	IF	CITATIONS
3	7	Interaction of Metal lons with Proteins as a Source of Inspiration for Biomimetic Materials. RSC Smart Materials, 2015, , 1-31.	0.1	5
3	8	INVESTIGATION OF THE REDOX STATE OF RECOMBINANT HORSERADISH PEROXIDASE PRODUCED IN INCLUSION BODIES AND FACTORS AFFECTING THE EFFICIENCY OF REFOLDING. Biochemical Society Transactions, 1995, 23, 138S-138S.	1.6	3