
Dimitris G Kaskaoutis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3131936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	COVID-19's impact on the atmospheric environment in the Southeast Asia region. Science of the Total Environment, 2020, 736, 139658.	8.0	230
2	Effects of crop residue burning on aerosol properties, plume characteristics, and longâ€range transport over northern India. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5424-5444.	3.3	228
3	Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeolian Research, 2012, 5, 51-62.	2.7	155
4	Long-range transport of dust aerosols over the Arabian Sea and Indian region — A case study using satellite data and ground-based measurements. Global and Planetary Change, 2010, 72, 164-181.	3.5	146
5	Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing. Science of the Total Environment, 2015, 521-522, 431-445.	8.0	142
6	Dryness of ephemeral lakes and consequences for dust activity: The case of the Hamoun drainage basin, southeastern Iran. Science of the Total Environment, 2013, 463-464, 552-564.	8.0	135
7	Variations in the aerosol optical properties and types over the tropical urban site of Hyderabad, India. Journal of Geophysical Research, 2009, 114, .	3.3	134
8	Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East. Reviews of Geophysics, 2022, 60, .	23.0	131
9	Variability and trends of aerosol properties over Kanpur, northern India using AERONET data (2001–10). Environmental Research Letters, 2012, 7, 024003.	5.2	121
10	Study on an intense dust storm over Greece. Atmospheric Environment, 2008, 42, 6884-6896.	4.1	117
11	Dust-storm dynamics over Sistan region, Iran: Seasonality, transport characteristics and affected areas. Aeolian Research, 2015, 16, 35-48.	2.7	104
12	Aerosol properties and radiative forcing over Kanpur during severe aerosol loading conditions. Atmospheric Environment, 2013, 79, 7-19.	4.1	98
13	Investigation into the wavelength dependence of the aerosol optical depth in the Athens area. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 2217-2234.	2.7	97
14	Crop Residue Burning: A Threat to South Asian Air Quality. Eos, 2014, 95, 333-334.	0.1	96
15	Case study of a dust storm over Hyderabad area, India: Its impact on solar radiation using satellite data and ground measurements. Science of the Total Environment, 2007, 384, 316-332.	8.0	94
16	Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region, Iran. Chemosphere, 2013, 90, 227-236.	8.2	91
17	Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran. Climate Dynamics, 2015, 45, 407-424.	3.8	87
18	Identification of aerosol type over the Arabian Sea in the premonsoon season during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB). Journal of Geophysical Research, 2009, 114,	3.3	86

#	Article	IF	CITATIONS
19	Aerosol climatology and discrimination of different types over Athens, Greece, based on MODIS data. Atmospheric Environment, 2007, 41, 7315-7329.	4.1	85
20	Extremely large anthropogenic-aerosol contribution to total aerosol load over the Bay of Bengal during winter season. Atmospheric Chemistry and Physics, 2011, 11, 7097-7117.	4.9	85
21	Assessment of dust activity and dust-plume pathways over Jazmurian Basin, southeast Iran. Aeolian Research, 2017, 24, 145-160.	2.7	80
22	Assessment of biomass burning and fossil fuel contribution to black carbon concentrations in Delhi during winter. Atmospheric Environment, 2018, 194, 93-109.	4.1	79
23	Seasonal variation of columnar aerosol optical properties over Athens, Greece, based on MODIS data. Remote Sensing of Environment, 2008, 112, 2354-2366.	11.0	75
24	Meteorological, atmospheric and climatic perturbations during major dust storms over Indo-Gangetic Basin. Aeolian Research, 2015, 17, 15-31.	2.7	74
25	Effects of Monsoon, Shamal and Levar winds on dust accumulation over the Arabian Sea during summer – The July 2016 case. Aeolian Research, 2019, 36, 27-44.	2.7	72
26	Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. Chemosphere, 2021, 262, 127835.	8.2	71
27	Heterogeneity in pre-monsoon aerosol types over the Arabian Sea deduced from ship-borne measurements of spectral AODs. Atmospheric Chemistry and Physics, 2010, 10, 4893-4908.	4.9	70
28	Aerosol climatology over four AERONET sites: An overview. Atmospheric Environment, 2008, 42, 1892-1906.	4.1	68
29	Estimating Particulate Matter using satellite based aerosol optical depth and meteorological variables in Malaysia. Atmospheric Research, 2017, 193, 142-162.	4.1	68
30	Seasonal Variability of Atmospheric Aerosol Parameters over Greater Noida Using Ground Sunphotometer Observations. Aerosol and Air Quality Research, 2014, 14, 608-622.	2.1	67
31	Scattering and absorption properties of near-surface aerosol over Gangetic–Himalayan region: the role of boundary-layer dynamics and long-range transport. Atmospheric Chemistry and Physics, 2015, 15, 1555-1572.	4.9	65
32	Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, Greece. Atmospheric Environment, 2020, 222, 117137.	4.1	64
33	The Caspian Sea–Hindu Kush Index (CasHKI): A regulatory factor for dust activity over southwest Asia. Global and Planetary Change, 2016, 137, 10-23.	3.5	63
34	Temporal changes of particulate concentration in the ambient air over the city of Zahedan, Iran. Air Quality, Atmosphere and Health, 2013, 6, 123-135.	3.3	62
35	Influence of anomalous dry conditions on aerosols over India: Transport, distribution and properties. Journal of Geophysical Research, 2012, 117, .	3.3	59
36	Extremely high aerosol loading over Arabian Sea during June 2008: The specific role of the atmospheric dynamics and Sistan dust storms. Atmospheric Environment, 2014, 94, 374-384.	4.1	59

#	Article	IF	CITATIONS
37	Aerosol chemical characterization and role of carbonaceous aerosol on radiative effect over Varanasi in central Indo-Gangetic Plain. Atmospheric Environment, 2016, 125, 437-449.	4.1	59
38	Multi-decadal variation of the net downward shortwave radiation over south Asia: The solar dimming effect. Atmospheric Environment, 2012, 50, 360-372.	4.1	55
39	Long-term brown carbon spectral characteristics in a Mediterranean city (Athens). Science of the Total Environment, 2020, 708, 135019.	8.0	55
40	Comparison of the Ãngström parameters retrieval in different spectral ranges with the use of different techniques. Meteorology and Atmospheric Physics, 2008, 99, 233-246.	2.0	54
41	Influence of natural and anthropogenic activities on UV Index variations – a study over tropical urban region using ground based observations and satellite data. Journal of Atmospheric Chemistry, 2008, 59, 219-236.	3.2	53
42	Impact of Two Intense Dust Storms on Aerosol Characteristics and Radiative Forcing over Patiala, Northwestern India. Advances in Meteorology, 2012, 2012, 1-13.	1.6	52
43	Satellite monitoring of the biomass-burning aerosols during the wildfires ofÂAugust 2007 in Greece: Climate implications. Atmospheric Environment, 2011, 45, 716-726.	4.1	51
44	Synoptic weather conditions and aerosol episodes over Indo-Gangetic Plains, India. Climate Dynamics, 2014, 43, 2313-2331.	3.8	51
45	Optical and radiative properties of aerosols over Desalpar, a remote site in western India: Source identification, modification processes and aerosol type discrimination. Science of the Total Environment, 2017, 575, 612-627.	8.0	51
46	Statistical evaluation of the dust events at selected stations in Southwest Asia: From the Caspian Sea to the Arabian Sea. Catena, 2018, 165, 590-603.	5.0	51
47	Seasonal variation of surface and vertical profile of aerosol properties over a tropical urban station Hyderabad, India. Journal of Geophysical Research D: Atmospheres, 2013, 118, 749-768.	3.3	50
48	Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products. Renewable and Sustainable Energy Reviews, 2017, 74, 616-637.	16.4	49
49	The Role of the Intertropical Discontinuity Region and the Heat Low in Dust Emission and Transport Over the Thar Desert, India: A Premonsoon Case Study. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13197-13219.	3.3	49
50	Aerosol and pollutant characteristics in Delhi during a winter research campaign. Environmental Science and Pollution Research, 2019, 26, 3771-3794.	5.3	49
51	Comparison between experimental data and modeling estimates of aerosol optical depth over Athens, Greece. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 1167-1178.	1.6	48
52	Recent improvements of the Meteorological Radiation Model for solar irradiance estimates under all-sky conditions. Renewable Energy, 2016, 93, 142-158.	8.9	48
53	Impact of atmospheric circulation types on southwest Asian dust and Indian summer monsoon rainfall. Atmospheric Research, 2018, 201, 189-205.	4.1	47
54	Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations. Natural Hazards, 2014, 71, 563-585.	3.4	46

#	Article	IF	CITATIONS
55	Statistical analysis of aerosols over the Gangetic–Himalayan region using ARIMA model based on long-term MODIS observations. Atmospheric Research, 2014, 149, 174-192.	4.1	46
56	Atmospheric dust dynamics in southern Central Asia: Implications for buildup of Tajikistan loess sediments. Atmospheric Research, 2019, 229, 74-85.	4.1	46
57	Year-long variability of the fossil fuel and wood burning black carbon components at a rural site in southern Delhi outskirts. Atmospheric Research, 2019, 216, 11-25.	4.1	46
58	Influence of land use/land cover (LULC) changes on atmospheric dynamics over the arid region of Rajasthan state, India. Journal of Arid Environments, 2013, 88, 90-101.	2.4	45
59	Assessment of PM2.5 chemical compositions in Delhi: primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation. Journal of Atmospheric Chemistry, 2017, 74, 423-450.	3.2	45
60	Integrating in situ Measurements and City Scale Modelling to Assess the COVID–19 Lockdown Effects on Emissions and Air Quality in Athens, Greece. Atmosphere, 2020, 11, 1174.	2.3	45
61	Impact of COVID-19 induced lockdown on land surface temperature, aerosol, and urban heat in Europe and North America. Sustainable Cities and Society, 2021, 75, 103336.	10.4	44
62	Trace-element concentrations and water-soluble ions in size-segregated dust-borne and soil samples in Sistan, southeast Iran. Aeolian Research, 2017, 25, 87-105.	2.7	43
63	Carbonaceous Aerosols in Contrasting Atmospheric Environments in Greek Cities: Evaluation of the EC-tracer Methods for Secondary Organic Carbon Estimation. Atmosphere, 2020, 11, 161.	2.3	43
64	Assessment of PM2.5 and PM10 over Guwahati in Brahmaputra River Valley: Temporal evolution, source apportionment and meteorological dependence. Atmospheric Pollution Research, 2017, 8, 13-28.	3.8	42
65	Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece. Renewable Energy, 2020, 146, 1372-1391.	8.9	42
66	Assessing vegetation restoration potential under different land uses and climatic classes in northeast Iran. Ecological Indicators, 2021, 122, 107325.	6.3	42
67	Multiyear analysis of Terra/Aqua MODIS aerosol optical depth and ground observations over tropical urban region of Hyderabad, India. Atmospheric Environment, 2011, 45, 1532-1542.	4.1	41
68	Characteristics of aerosols over Hyderabad in southern Peninsular India: synergy in the classification techniques. Annales Geophysicae, 2012, 30, 1393-1410.	1.6	41
69	Contrasting aerosol characteristics and radiative forcing over Hyderabad, India due to seasonal mesoscale and synopticâ€scale processes. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 434-450.	2.7	40
70	Atmospheric Dynamics and Numerical Simulations of Six Frontal Dust Storms in the Middle East Region. Atmosphere, 2021, 12, 125.	2.3	40
71	Meteorological regimes modulating dust outbreaks in southwest Asia: The role of pressure anomaly and Inter-Tropical Convergence Zone on the 1–3 July 2014 case. Aeolian Research, 2015, 18, 83-97.	2.7	39
72	Modification of solar radiation components under different atmospheric conditions in the Greater Athens Area, Greece. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 1043-1052.	1.6	38

#	Article	IF	CITATIONS
73	Analysis of the TSP, PM10 concentrations and water-soluble ionic species in airborne samples over Sistan, Iran during the summer dusty period. Atmospheric Pollution Research, 2017, 8, 403-417.	3.8	38
74	Analysis of intense dust storms over the eastern Mediterranean in March 2018: Impact on radiative forcing and Athens air quality. Atmospheric Environment, 2019, 209, 23-39.	4.1	38
75	Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements. Atmospheric Research, 2014, 138, 223-239.	4.1	37
76	The solar dimming/brightening effect over the Mediterranean Basin in the period 1979–2012. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 150-151, 31-46.	1.6	37
77	Using the Boruta algorithm and deep learning models for mapping land susceptibility to atmospheric dust emissions in Iran. Aeolian Research, 2021, 50, 100682.	2.7	37
78	Numerical simulations of dust storms originated from dried lakes in central and southwest Asia: The case of Aral Sea and Sistan Basin. Aeolian Research, 2021, 50, 100679.	2.7	37
79	Seasonal inhomogeneity in cloud precursors over Gangetic Himalayan region during GVAX campaign. Atmospheric Research, 2015, 155, 158-175.	4.1	36
80	Variation in aerosol properties over Hyderabad, India during intense cyclonic conditions. International Journal of Remote Sensing, 2008, 29, 4575-4597.	2.9	35
81	Solar dimming over the tropical urban region of Hyderabad, India: Effect of increased cloudiness and increased anthropogenic aerosols. Journal of Geophysical Research, 2010, 115, .	3.3	35
82	Transport pathways of Sahara dust over Athens, Greece as detected by MODIS and TOMS. Geomatics, Natural Hazards and Risk, 2012, 3, 35-54.	4.3	34
83	Measuring the spatial variability of black carbon in Athens during wintertime. Air Quality, Atmosphere and Health, 2019, 12, 1405-1417.	3.3	34
84	Silver linings in the dark clouds of COVID-19: Improvement of air quality over India and Delhi metropolitan area from measurements and WRF-CHIMERE model simulations. Atmospheric Pollution Research, 2021, 12, 225-242.	3.8	34
85	The role of aerosol models of the SMARTS code in predicting the spectral direct-beam irradiance in an urban area. Renewable Energy, 2008, 33, 1532-1543.	8.9	33
86	Assessment of changes in atmospheric dynamics and dust activity over southwest Asia using the Caspian Sea–Hindu Kush Index. International Journal of Climatology, 2017, 37, 1013-1034.	3.5	33
87	The Aura–OMI Aerosol Index distribution over Greece. Atmospheric Research, 2010, 98, 28-39.	4.1	32
88	Overview of atmospheric aerosol studies in Malaysia: Known and unknown. Atmospheric Research, 2016, 182, 302-318.	4.1	31
89	Integrated modelling for mapping spatial sources of dust in central Asia - An important dust source in the global atmospheric system. Atmospheric Pollution Research, 2021, 12, 101173.	3.8	31
90	Long-Term Variability of Dust Events in Southwestern Iran and Its Relationship with the Drought. Atmosphere, 2021, 12, 1350.	2.3	31

#	Article	IF	CITATIONS
91	Aerosol columnar characteristics and their heterogeneous nature over Varanasi, in the central Ganges valley. Environmental Science and Pollution Research, 2018, 25, 24726-24745.	5.3	30
92	Atmospheric dynamics associated with exceptionally dusty conditions over the eastern Mediterranean and Greece in March 2018. Atmospheric Research, 2019, 218, 269-284.	4.1	29
93	Atmospheric Dynamics from Synoptic to Local Scale During an Intense Frontal Dust Storm over the Sistan Basin in Winter 2019. Geosciences (Switzerland), 2019, 9, 453.	2.2	28
94	Classification of weather clusters over the Middle East associated with high atmospheric dust-AODs in West Iran. Atmospheric Research, 2021, 259, 105682.	4.1	28
95	Apportionment of black and brown carbon spectral absorption sources in the urban environment of Athens, Greece, during winter. Science of the Total Environment, 2021, 801, 149739.	8.0	28
96	Optical Properties of Near-Surface Urban Aerosols and their Chemical Tracing in a Mediterranean City (Athens). Aerosol and Air Quality Research, 2019, 19, 49-70.	2.1	28
97	Characterising the longâ€range transport mechanisms of different aerosol types over Athens, Greece during 2000–2005. International Journal of Climatology, 2012, 32, 1249-1270.	3.5	26
98	Long-Term (1951–2007) Rainfall Trends around Six Indian Cities: Current State, Meteorological, and Urban Dynamics. Advances in Meteorology, 2013, 2013, 1-15.	1.6	25
99	Columnar aerosol characteristics and radiative forcing over the Doon Valley in the Shivalik range of northwestern Himalayas. Environmental Science and Pollution Research, 2016, 23, 25467-25484.	5.3	25
100	Long-term variability and trends in the Caspian Sea – Hindu Kush Index: Influence on atmospheric circulation patterns, temperature and rainfall over the Middle East and Southwest Asia. Global and Planetary Change, 2018, 169, 16-33.	3.5	25
101	Climatology of the Sistan Levar wind: Atmospheric dynamics driving its onset, duration and withdrawal. Atmospheric Research, 2021, 260, 105711.	4.1	25
102	A study of aerosol particle sizes in the atmosphere of Athens, Greece, retrieved from solar spectral measurements. Atmospheric Research, 2007, 86, 194-206.	4.1	24
103	Long term variability of carbonaceous aerosols over Southeast Asia via reanalysis: Association with changes in vegetation cover and biomass burning. Atmospheric Research, 2020, 245, 105064.	4.1	24
104	In situ identification of aerosol types in Athens, Greece, based on long-term optical and on online chemical characterization. Atmospheric Environment, 2021, 246, 118070.	4.1	24
105	Mineralogical, geochemical, and textural characteristics of soil and airborne samples during dust storms in Khuzestan, southwest Iran. Chemosphere, 2022, 286, 131879.	8.2	24
106	Application of SPCTRAL2 parametric model in estimating spectral solar irradiances over polluted Athens atmosphere. Renewable Energy, 2004, 29, 1109-1119.	8.9	23
107	Influence of continental advection on aerosol characteristics over Bay of Bengal (BoB) in winter: results from W-ICARB cruise experiment. Annales Geophysicae, 2011, 29, 1423-1438.	1.6	22
108	Aeolian dust dynamics in the Fergana Valley, Central Asia, since ~30Âka inferred from loess deposits. Geoscience Frontiers, 2021, 12, 101180.	8.4	22

#	Article	IF	CITATIONS
109	Evaluation of Machine Learning Models for Estimating PM2.5 Concentrations across Malaysia. Applied Sciences (Switzerland), 2021, 11, 7326.	2.5	21
110	Spectral aerosol optical depth and Angstrom parameters in the polluted Athens atmosphere. Theoretical and Applied Climatology, 2005, 81, 161-167.	2.8	20
111	Synergistic Use of Remote Sensing and Modeling for Tracing Dust Storms in the Mediterranean. Advances in Meteorology, 2012, 2012, 1-14.	1.6	20
112	Checking the validity of the Ãngström's formula with spectral data of direct-beam irradiance obtained in Athens, Greece. Atmospheric Research, 2006, 79, 67-87.	4.1	19
113	Spatial heterogeneities in aerosol size distribution over Bay of Bengal during Winter-ICARB Experiment. Atmospheric Environment, 2011, 45, 4695-4706.	4.1	19
114	In-situ measurements of aerosol properties and estimates of radiative forcing efficiency over Gangetic-Himalayan region during the GVAX field campaign. Atmospheric Environment, 2014, 94, 96-105.	4.1	19
115	Estimation of particulate matter from satellite- and ground-based observations over Hyderabad, India. International Journal of Remote Sensing, 2015, 36, 6192-6213.	2.9	18
116	Predicting land susceptibility to atmospheric dust emissions in central Iran by combining integrated data mining and a regional climate model. Atmospheric Pollution Research, 2021, 12, 172-187.	3.8	18
117	Generation of typical meteorological years for 33 locations in Greece: adaptation to the needs of various applications. Theoretical and Applied Climatology, 2020, 141, 1313-1330.	2.8	16
118	Identification of key aerosol types and mixing states in the central Indian Himalayas during the GVAX campaign: the role of particle size in aerosol classification. Science of the Total Environment, 2021, 761, 143188.	8.0	16
119	Impacts of severe residential wood burning on atmospheric processing, water-soluble organic aerosol and light absorption, in an inland city of Southeastern Europe. Atmospheric Environment, 2022, 280, 119139.	4.1	16
120	Predicting of dust storm source by combining remote sensing, statistic-based predictive models and game theory in the Sistan watershed, southwestern Asia. Journal of Arid Land, 2021, 13, 1103-1121.	2.3	15
121	The diffuse-to-global and diffuse-to-direct-beam spectral irradiance ratios as turbidity indexes in an urban environment. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 246-256.	1.6	14
122	Aerosol Monitoring over Athens Using Satellite and Ground-Based Measurements. Advances in Meteorology, 2010, 2010, 1-12.	1.6	14
123	Evaluation of Nine Operational Models in Forecasting Different Types of Synoptic Dust Events in the Middle East. Geosciences (Switzerland), 2021, 11, 458.	2.2	14
124	Classification of synoptic weather clusters associated with dust accumulation over southeastern areas of the Caspian Sea (Northeast Iran and Karakum desert). Aeolian Research, 2022, 54, 100771.	2.7	14
125	Investigation about the dependence of spectral diffuse-to-direct-beam irradiance ratio on atmospheric turbidity and solar zenith angle. Theoretical and Applied Climatology, 2007, 89, 245-256.	2.8	13
126	First results from light scattering enhancement factor over central Indian Himalayas during GVAX campaign. Science of the Total Environment, 2017, 605-606, 124-138.	8.0	13

#	Article	IF	CITATIONS
127	Long-term (2008–2018) aerosol properties and radiative effect at high-altitude sites over western trans-Himalayas. Science of the Total Environment, 2020, 734, 139354.	8.0	13
128	Assessment of the COVID-19 Lockdown Effects on Spectral Aerosol Scattering and Absorption Properties in Athens, Greece. Atmosphere, 2021, 12, 231.	2.3	13
129	Characteristics and Health Risk Assessment of Mercury Exposure via Indoor and Outdoor Household Dust in Three Iranian Cities. Atmosphere, 2022, 13, 583.	2.3	13
130	Tracing of Heavy Metals Embedded in Indoor Dust Particles from the Industrial City of Asaluyeh, South of Iran. International Journal of Environmental Research and Public Health, 2022, 19, 7905.	2.6	13
131	A statistical approach for identification of dust-AOD hotspots climatology and clustering of dust regimes over Southwest Asia and the Arabian Sea. Atmospheric Pollution Research, 2022, 13, 101395.	3.8	12
132	Atmospheric dust dynamics over Central Asia: A perspective view from loess deposits. Gondwana Research, 2022, 109, 150-165.	6.0	12
133	Chemical Composition and Source Apportionment of Total Suspended Particulate in the Central Himalayan Region. Atmosphere, 2021, 12, 1228.	2.3	11
134	The choice of the most appropriate aerosol model in a radiative transfer code. Solar Energy, 2008, 82, 1198-1208.	6.1	10
135	Identification of the Aerosol Types over Athens, Greece: The Influence of Air-Mass Transport. Advances in Meteorology, 2010, 2010, 1-15.	1.6	9
136	Dependence of the spectral diffuse-direct irradiance ratio on aerosol spectral distribution and single scattering albedo. Atmospheric Research, 2016, 178-179, 84-94.	4.1	9
137	Investigation of the ozone and trace gases contribution to the total optical depth in the polluted urban environment of Athens. Atmospheric Research, 2007, 86, 286-296.	4.1	7
138	Online Chemical Characterization and Sources of Submicron Aerosol in the Major Mediterranean Port City of Piraeus, Greece. Atmosphere, 2021, 12, 1686.	2.3	7
139	Long-term (2012–2020) PM10 concentrations and increasing trends in the Sistan Basin: The role of Levar wind and synoptic meteorology. Atmospheric Pollution Research, 2022, 13, 101460.	3.8	6
140	Desert Dust Properties, Modelling, and Monitoring. Advances in Meteorology, 2012, 2012, 1-2.	1.6	5
141	Changes of Permanent Lake Surfaces, and Their Consequences for Dust Aerosols and Air Quality: The Hamoun Lakes of the Sistan Area, Iran. , 2012, , .		5
142	Effect of aerosol types from various sources at an urban location on spectral curvature of scattering and absorption coefficients. Atmospheric Research, 2021, 264, 105865.	4.1	5
143	Water vapour characteristics and radiative effects at high-altitude Himalayan sites. Atmospheric Pollution Research, 2022, 13, 101303.	3.8	5
144	Editorial for the Special Issue "Solar Radiation, Modeling, and Remote Sensing― Remote Sensing, 2019, 11, 1198.	4.0	4

#	Article	IF	CITATIONS
145	Satellite data for upscalling urban air pollution in Malaysia. IOP Conference Series: Earth and Environmental Science, 2018, 169, 012036.	0.3	3
146	Assessment of the dust sources over Central and Southwest Asia with emphasis on the Sistan dust storms. E3S Web of Conferences, 2019, 99, 01002.	0.5	3
147	Study of Atmospheric Turbidity in a Northern Tropical Region Using Models and Measurements of Clobal Solar Radiation. Remote Sensing, 2021, 13, 2271.	4.0	3
148	Modulation of Atmospheric Dynamics and Dust Emissions in Southwest Asia by the Caspian Sea—Hindu Kush Index. Springer Atmospheric Sciences, 2017, , 941-947.	0.3	1
149	Changes in surface irradiance and meteorological parameters associated with the annular solar Eclipse of 15 January 2010. AIP Conference Proceedings, 2013, , .	0.4	Ο
150	Aerosol Characteristics over Bay of Bengal During W-ICARB Cruise Campaign. Springer Atmospheric Sciences, 2013, , 1033-1039.	0.3	0
151	The Caspian Sea–Hindu Kush Index (CasHKI): A Climatic Index That Affects Dust Activity Over Southwest Asia. , 2018, , .		0