
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/313185/publications.pdf Version: 2024-02-01

KUN-7FLFF

#	Article	IF	CITATIONS
1	Spinal circuitry and respiratory recovery following spinal cord injury. Respiratory Physiology and Neurobiology, 2009, 169, 123-132.	0.7	124
2	Intermittent hypoxia and neurorehabilitation. Journal of Applied Physiology, 2015, 119, 1455-1465.	1.2	110
3	Respiratory function following bilateral mid-cervical contusion injury in the adult rat. Experimental Neurology, 2012, 235, 197-210.	2.0	74
4	Intrapleural Administration of AAV9 Improves Neural and Cardiorespiratory Function in Pompe Disease. Molecular Therapy, 2013, 21, 1661-1667.	3.7	63
5	Neural control of phrenic motoneuron discharge. Respiratory Physiology and Neurobiology, 2011, 179, 71-79.	0.7	50
6	Hypoglossal Neuropathology and Respiratory Activity in Pompe Mice. Frontiers in Physiology, 2011, 2, 31.	1.3	46
7	The impact of spinal cord injury on breathing during sleep. Respiratory Physiology and Neurobiology, 2013, 188, 344-354.	0.7	41
8	Intraspinal transplantation and modulation of donor neuron electrophysiological activity. Experimental Neurology, 2014, 251, 47-57.	2.0	41
9	Contribution of the spontaneous crossed-phrenic phenomenon to inspiratory tidal volume in spontaneously breathing rats. Journal of Applied Physiology, 2012, 112, 96-105.	1.2	40
10	Retrograde Gene Delivery to Hypoglossal Motoneurons Using Adeno-Associated Virus Serotype 9. Human Gene Therapy Methods, 2012, 23, 148-156.	2.1	39
11	Phrenic Motoneuron Discharge Patterns During Hypoxia-Induced Short-Term Potentiation in Rats. Journal of Neurophysiology, 2009, 102, 2184-2193.	0.9	38
12	The phrenic motor nucleus in the adult mouse. Experimental Neurology, 2010, 226, 254-258.	2.0	36
13	Phrenic motoneuron discharge patterns following chronic cervical spinal cord injury. Experimental Neurology, 2013, 249, 20-32.	2.0	36
14	Recovery of inspiratory intercostal muscle activity following high cervical hemisection. Respiratory Physiology and Neurobiology, 2012, 183, 186-192.	0.7	34
15	Respiratory motor outputs following unilateral midcervical spinal cord injury in the adult rat. Journal of Applied Physiology, 2014, 116, 395-405.	1.2	33
16	Rapid diaphragm atrophy following cervical spinal cord hemisection. Respiratory Physiology and Neurobiology, 2014, 192, 66-73.	0.7	30
17	Influence of vagal afferents on supraspinal and spinal respiratory activity following cervical spinal cord injury in rats. Journal of Applied Physiology, 2010, 109, 377-387.	1.2	27
18	Hypoxia triggers short term potentiation of phrenic motoneuron discharge after chronic cervical spinal cord injury. Experimental Neurology, 2015, 263, 314-324.	2.0	26

#	Article	IF	CITATIONS
19	Diaphragm and Intercostal Muscle Activity after Mid-Cervical Spinal Cord Contusion in the Rat. Journal of Neurotrauma, 2018, 35, 533-547.	1.7	26
20	Vagal Control of Breathing Pattern after Midcervical Contusion in Rats. Journal of Neurotrauma, 2017, 34, 734-745.	1.7	25
21	Mild Acute Intermittent Hypoxia Improves Respiratory Function in Unanesthetized Rats With Midcervical Contusion. Neurorehabilitation and Neural Repair, 2017, 31, 364-375.	1.4	22
22	Pre-phrenic interneurons: Characterization and role in phrenic pattern formation and respiratory recovery following spinal cord injury. Respiratory Physiology and Neurobiology, 2019, 265, 24-31.	0.7	22
23	Respiratory outcomes after mid-cervical transplantation of embryonic medullary cells in rats with cervical spinal cord injury. Experimental Neurology, 2016, 278, 22-26.	2.0	21
24	Modulation of Serotonin and Adenosine 2A Receptors on Intermittent Hypoxia-Induced Respiratory Recovery following Mid-Cervical Contusion in the Rat. Journal of Neurotrauma, 2019, 36, 2991-3004.	1.7	21
25	Preinspiratory and inspiratory hypoglossal motor output during hypoxia-induced plasticity in the rat. Journal of Applied Physiology, 2010, 108, 1187-1198.	1.2	20
26	Compensatory Function of the Diaphragm after High Cervical Hemisection in the Rat. Journal of Neurotrauma, 2017, 34, 2634-2644.	1.7	20
27	Effects of serotonergic agents on respiratory recovery after cervical spinal injury. Journal of Applied Physiology, 2015, 119, 1075-1087.	1.2	17
28	Response of respiratory-related hypoglossal nerve activity to capsaicin-induced pulmonary C-fiber activation in rats. Journal of Biomedical Science, 2003, 10, 706-717.	2.6	16
29	Neural drive to tongue protrudor and retractor muscles following pulmonary C-fiber activation. Journal of Applied Physiology, 2007, 102, 434-444.	1.2	16
30	Diaphragm Motor-Evoked Potential Induced by Cervical Magnetic Stimulation following Cervical Spinal Cord Contusion in the Rat. Journal of Neurotrauma, 2021, 38, 2122-2140.	1.7	16
31	Phrenic motor outputs in response to bronchopulmonary Câ€fibre activation following chronic cervical spinal cord injury. Journal of Physiology, 2016, 594, 6009-6024.	1.3	15
32	Phrenicotomy alters phrenic long-term facilitation following intermittent hypoxia in anesthetized rats. Journal of Applied Physiology, 2010, 109, 279-287.	1.2	14
33	Attenuation of the pulmonary chemoreflex following acute cervical spinal cord injury. Journal of Applied Physiology, 2014, 116, 757-766.	1.2	14
34	Capsaicin administration inhibits the abducent branch but excites the thyroarytenoid branch of the recurrent laryngeal nerves in the rat. Journal of Applied Physiology, 2005, 98, 1646-1652.	1.2	13
35	The Therapeutic Effectiveness of Delayed Fetal Spinal Cord Tissue Transplantation on Respiratory Function Following Mid-Cervical Spinal Cord Injury. Neurotherapeutics, 2017, 14, 792-809.	2.1	13
36	Intraspinal transplantation of subventricular zone-derived neural progenitor cells improves phrenic motor output after high cervical spinal cord injury. Experimental Neurology, 2017, 287, 205-215.	2.0	13

#	Article	IF	CITATIONS
37	Impact of cervical spinal cord contusion on the breathing pattern across the sleep-wake cycle in the rat. Journal of Applied Physiology, 2019, 126, 111-123.	1.2	13
38	Permanent diaphragmatic deficits and spontaneous respiratory plasticity in a mouse model of incomplete cervical spinal cord injury. Respiratory Physiology and Neurobiology, 2021, 284, 103568.	0.7	13
39	Rostral-Caudal Effect of Cervical Magnetic Stimulation on the Diaphragm Motor Evoked Potential after Cervical Spinal Cord Contusion in the Rat. Journal of Neurotrauma, 2022, 39, 683-700.	1.7	13
40	Uncoupling of upper airway motor activity from phrenic bursting by positive end-expired pressure in the rat. Journal of Applied Physiology, 2007, 102, 878-889.	1.2	12
41	Pulmonary C-fiber activation attenuates respiratory-related tongue movements. Journal of Applied Physiology, 2012, 113, 1369-1376.	1.2	12
42	Recovery of the pulmonary chemoreflex and functional role of bronchopulmonary C-fibers following chronic cervical spinal cord injury. Journal of Applied Physiology, 2014, 117, 1188-1198.	1.2	12
43	Contribution of 5-HT2A receptors on diaphragmatic recovery after chronic cervical spinal cord injury. Respiratory Physiology and Neurobiology, 2017, 244, 51-55.	0.7	11
44	5-HT7 Receptor Inhibition Transiently Improves Respiratory Function Following Daily Acute Intermittent Hypercapnic-Hypoxia in Rats With Chronic Midcervical Spinal Cord Contusion. Neurorehabilitation and Neural Repair, 2020, 34, 333-343.	1.4	11
45	The Impact of Cervical Spinal Cord Contusion on the Laryngeal Resistance in the Rat. Journal of Neurotrauma, 2019, 36, 448-459.	1.7	9
46	Effects of Chronic High-Frequency rTMS Protocol on Respiratory Neuroplasticity Following C2 Spinal Cord Hemisection in Rats. Biology, 2022, 11, 473.	1.3	9
47	Pulmonary C-fiber receptor activation abolishes uncoupled facial nerve activity from phrenic bursting during positive end-expired pressure in the rat. Journal of Applied Physiology, 2008, 104, 119-129.	1.2	8
48	Functional role of carbon dioxide on intermittent hypoxia induced respiratory response following mid-cervical contusion in the rat. Experimental Neurology, 2021, 339, 113610.	2.0	8
49	Intermittent hypoxia and respiratory recovery in pre-clinical rodent models of incomplete cervical spinal cord injury. Experimental Neurology, 2021, 342, 113751.	2.0	8
50	High frequency repetitive Transcranial Magnetic Stimulation promotes long lasting phrenic motoneuron excitability via GABAergic networks. Respiratory Physiology and Neurobiology, 2021, 292, 103704.	0.7	8
51	Vasopressin produces inhibition on phrenic nerve activity and apnea through V(1A) receptors in the area postrema in rats. Chinese Journal of Physiology, 2006, 49, 313-25.	0.4	8
52	Capsaicin-induced activation of pulmonary vagal C fibers produces reflex laryngeal closure in the rat. Journal of Applied Physiology, 2006, 101, 1104-1112.	1.2	7
53	Hypoxia-induced short-term potentiation of respiratory-modulated facial motor output in the rat. Respiratory Physiology and Neurobiology, 2010, 173, 107-111.	0.7	7
54	Power spectral analysis of hypoglossal nerve activity during intermittent hypoxia-induced long-term facilitation in mice. Journal of Neurophysiology, 2016, 115, 1372-1380.	0.9	7

#	Article	IF	CITATIONS
55	Neuropathology of distinct diaphragm areas following mid-cervical spinal cord contusion in the rat. Spine Journal, 2022, 22, 1726-1741.	0.6	6
56	Pulmonary C-fiber activation enhances respiratory-related activities of the recurrent laryngeal nerve in rats. Chinese Journal of Physiology, 2002, 45, 143-54.	0.4	5
57	Loss of CDKL5 disrupts respiratory function in mice. Respiratory Physiology and Neurobiology, 2018, 248, 48-54.	0.7	4
58	Modulation of the extrinsic tongue muscle activity in response to bronchopulmonary C-fiber activation following midcervical contusion in the rat. Journal of Applied Physiology, 2020, 128, 1130-1145.	1.2	4
59	Modulation of glycinergic inhibition on respiratory rhythmic hypoglossal bursting in the rat. Chinese Journal of Physiology, 2019, 62, 27.	0.4	4
60	Response of respiratory-related hypoglossal nerve activity to capsaicin-induced pulmonary C-fiber activation in rats. Journal of Biomedical Science, 2003, 10, 706-17.	2.6	4
61	Impact of cervical spinal cord injury on the relationship between the metabolism and ventilation in rats. Journal of Applied Physiology, 2021, 131, 1799-1814.	1.2	3
62	Repeated intravenous doxapram induces phrenic motor facilitation. Experimental Neurology, 2013, 250, 108-115.	2.0	0
63	Characteristics of preâ€inspiratory and decoupled activities of the upper airway motoneurons in the rat. FASEB Journal, 2006, 20, A371.	0.2	Ο
64	Inhibition of respiratoryâ€related activity of the facial nerve by pulmonary vagal Câ€fiber activation in the rat. FASEB Journal, 2007, 21, A1289.	0.2	0
65	Preâ€inspiratory and inspiratory hypoglossal motor output during hypoxia induced plasticity in the rat. FASEB Journal, 2010, 24, 1042.4.	0.2	Ο
66	Diaphragm and intercostal neuromuscular plasticity following C2 spinal hemisection injury (C2HS). FASEB Journal, 2010, 24, 799.20.	0.2	0
67	Upper extremity skeletal muscle adaptations following high cervical spinal cord injury (SCI) in adult rats. FASEB Journal, 2011, 25, 1105.16.	0.2	0
68	Modulation of phrenic motoneuron plasticity following chronic high cervical spinal cord injury in the rat. FASEB Journal, 2011, 25, 1111.7.	0.2	0
69	Hypoglossal motoneuron pathology in a mouse model of Pompe disease. FASEB Journal, 2011, 25, .	0.2	0
70	Phrenic motoneuron rateâ€coding and recruitment during longâ€ŧerm facilitation. FASEB Journal, 2012, 26, .	0.2	0
71	Cervical interneuron bursting during hypoxia in anesthetized rats. FASEB Journal, 2012, 26, 1147.3.	0.2	0
72	5â€HT2 receptor activation modulates phrenic motor output following chronic cervical spinal cord injury. FASEB Journal, 2013, 27, 930.8.	0.2	0

#	Article	IF	CITATIONS
73	Apnea Alters the Pattern of Intermittent Hypoxiaâ€Induced Long Term Facilitation in Anesthetized Mice. FASEB Journal, 2013, 27, 930.6.	0.2	0
74	Intermittent respiratory stimulation with doxapram induces phrenic motor plasticity. FASEB Journal, 2013, 27, 719.3.	0.2	0
75	Acute hypoxia induces short term potentiation of mid ervical interneuron discharge (LB786). FASEB Journal, 2014, 28, LB786.	0.2	0
76	Attenuation of pulmonary chemoreflex following acute cervical spinal cord injury (1178.4). FASEB Journal, 2014, 28, 1178.4.	0.2	0
77	Modulation of 5â€HT receptor and adenosine 2A receptor on intermittent hypoxiaâ€induced respiratory recovery following midâ€cervical contusion in the rat. FASEB Journal, 2019, 33, 843.1.	0.2	0
78	Modulation of the tongue muscle activity in response to bronchopulmonary Câ€fiber activation following midâ€eervical contused in the rat. FASEB Journal, 2020, 34, 1-1.	0.2	0