Sean D G Marshall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/313181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impacts of soilâ€borne disease on plant yield and farm profit in dairying soils. , 2022, 1, 16-29.		8
2	Coconut Rhinoceros Beetle in Samoa: Review of a Century-Old Invasion and Prospects for Control in a Changing Future. Insects, 2022, 13, 487.	1.0	5
3	Three-dimensional cellular aggregates formed by <i>Beauveria pseudobassiana</i> in liquid culture with potential for use as a biocontrol agent of the African black beetle (<i>Heteronychus arator</i>). Mycology, 2021, 12, 105-118.	2.0	3
4	Can Biological Control Overcome the Threat From Newly Invasive Coconut Rhinoceros Beetle Populations (Coleoptera: Scarabaeidae)? A Review. Annals of the Entomological Society of America, 2021, 114, 247-256.	1.3	15
5	Monitoring an invasive coconut rhinoceros beetle population using pheromone traps in Honiara, Solomon Islands. New Zealand Plant Protection, 2021, 74, 37-41.	0.3	6
6	Confirmation of Oryctes rhinoceros nudivirus infections in G-haplotype coconut rhinoceros beetles (Oryctes rhinoceros) from Palauan PCR-positive populations. Scientific Reports, 2021, 11, 18820.	1.6	14
7	Formation of microsclerotia in three species of <i>Beauveria</i> and storage stability of a prototype granular formulation. Biocontrol Science and Technology, 2018, 28, 1097-1113.	0.5	17
8	A new haplotype of the coconut rhinoceros beetle, Oryctes rhinoceros, has escaped biological control by Oryctes rhinoceros nudivirus and is invading Pacific Islands. Journal of Invertebrate Pathology, 2017, 149, 127-134.	1.5	54
9	Nutritional demands and metabolic characteristics of the DSIR-HA-1179 insect cell line during growth and infection with the Oryctes nudivirus. In Vitro Cellular and Developmental Biology - Animal, 2017, 53, 908-921.	0.7	2
10	High Genetic Diversity of Microbial Cellulase and Hemicellulase Genes in the Hindgut of Holotrichia parallela Larvae. International Journal of Molecular Sciences, 2015, 16, 16545-16559.	1.8	15
11	Histopathological Effects of the Yen-Tc Toxin Complex from Yersinia entomophaga MH96 (Enterobacteriaceae) on the Costelytra zealandica (Coleoptera: Scarabaeidae) Larval Midgut. Applied and Environmental Microbiology, 2012, 78, 4835-4847.	1.4	27
12	Genetic and electron-microscopic characterization of Rickettsiella bacteria from the manuka beetle, Pyronota setosa (Coleoptera: Scarabaeidae). Journal of Invertebrate Pathology, 2011, 107, 206-211.	1.5	21
13	Biochemical characterisation of MdCXE1, a carboxylesterase from apple that is expressed during fruit ripening. Phytochemistry, 2011, 72, 564-571.	1.4	28
14	3D structure of the <i>Yersinia entomophaga</i> toxin complex and implications for insecticidal activity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20544-20549.	3.3	91
15	Selective Sweeps at the Organophosphorus Insecticide Resistance Locus, Rop-1, Have Affected Variation across and beyond the Â-Esterase Gene Cluster in the Australian Sheep Blowfly, Lucilia cuprina. Molecular Biology and Evolution, 2011, 28, 1835-1846.	3.5	16
16	The scarab gut: A potential bioreactor for bioâ€fuel production. Insect Science, 2010, 17, 175-183.	1.5	70
17	Odorant Receptors from the Light brown Apple Moth (Epiphyas postvittana) Recognize Important Volatile Compounds Produced by Plants. Chemical Senses, 2009, 34, 383-394.	1.1	104
18	Phenotypic changes and the fate of digestive enzymes during induction of amber disease in larvae of the New Zealand grass grub (Costelytra zealandica). Journal of Invertebrate Pathology, 2009, 101, 215-221.	1.5	7

SEAN D G MARSHALL

#	Article	IF	CITATIONS
19	Serine proteases identified from a Costelytra zealandica (White) (Coleoptera: Scarabaeidae) midgut EST library and their expression through insect development. Insect Molecular Biology, 2008, 17, 247-259.	1.0	17
20	<i>Serratia entomophila</i> inoculation causes a defect in exocytosis in <i>Costelytra zealandica</i> larvae. Insect Molecular Biology, 2008, 17, 375-385.	1.0	15
21	Expressed sequence tags and proteomics of antennae from the tortricid moth, <i>Epiphyas postvittana</i> . Insect Molecular Biology, 2008, 17, 361-373.	1.0	55
22	High-Resolution Crystal Structure of Plant Carboxylesterase AeCXE1, from Actinidia eriantha, and Its Complex with a High-Affinity Inhibitor Paraoxon,. Biochemistry, 2007, 46, 1851-1859.	1.2	58
23	Expressed sequence tags from the midgut of <i>Epiphyas postvittana</i> (Walker) (Lepidoptera:) Tj ETQq1 1 0.78	34314 rgB 1.0	T 10verlock
24	The Carboxylesterase Gene Family from Arabidopsis thaliana. Journal of Molecular Evolution, 2003, 57, 487-500.	0.8	104
25	Coordination of ges-1 Expression Between the Caenorhabditis Pharynx and Intestine. Developmental Biology, 2001, 239, 350-363.	0.9	24
26	Barriers to IPM adoption for insect pests in New Zealand pastures. Journal of New Zealand Grasslands, 0, , 139-148.	0.0	3