Jun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3131766/publications.pdf Version: 2024-02-01

Ιτιν Υλνις

#	Article	IF	CITATIONS
1	Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nature Genetics, 2018, 50, 803-813.	21.4	368
2	Genomeâ€wide association study discovered genetic variation and candidate genes of fibre quality traits in <i>Gossypium hirsutum</i> L Plant Biotechnology Journal, 2017, 15, 982-996.	8.3	199
3	The cotton laccase gene <i>GhLAC15 </i> enhances Verticillium wilt resistance via an increase in defenceâ€induced lignification and lignin components in the cell walls of plants. Molecular Plant Pathology, 2019, 20, 309-322.	4.2	111
4	High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nature Genetics, 2021, 53, 1385-1391.	21.4	76
5	Histochemical Analyses Reveal That Stronger Intrinsic Defenses in Gossypium barbadense Than in G. hirsutum Are Associated With Resistance to Verticillium dahliae. Molecular Plant-Microbe Interactions, 2017, 30, 984-996.	2.6	65
6	A newly identified cluster of glutathione <i>S</i> â€ŧransferase genes provides Verticillium wilt resistance in cotton. Plant Journal, 2019, 98, 213-227.	5.7	44
7	Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt. Gene, 2016, 575, 687-694.	2.2	34
8	A genome-wide association study uncovers novel genomic regions and candidate genes of yield-related traits in upland cotton. Theoretical and Applied Genetics, 2018, 131, 2413-2425.	3.6	31
9	A high-density genetic map and multiple environmental tests reveal novel quantitative trait loci and candidate genes for fibre quality and yield in cotton. Theoretical and Applied Genetics, 2020, 133, 3395-3408.	3.6	24
10	Tissueâ€specific expression of <i>GhnsLTPs</i> identified via GWAS sophisticatedly coordinates disease and insect resistance by regulating metabolic flux redirection in cotton. Plant Journal, 2021, 107, 831-846.	5.7	22
11	A largeâ€scale genomic association analysis identifies a fragment in Dt11 chromosome conferring cotton Verticillium wilt resistance. Plant Biotechnology Journal, 2021, 19, 2126-2138.	8.3	21
12	Dynamic characteristics and functional analysis provide new insights into long non-coding RNA responsive to Verticillium dahliae infection in Gossypium hirsutum. BMC Plant Biology, 2021, 21, 68.	3.6	19
13	Cotton <i>GhSSl2</i> isoforms from the stearoyl acyl carrier protein fatty acid desaturase family regulate Verticillium wilt resistance. Molecular Plant Pathology, 2021, 22, 1041-1056.	4.2	16
14	Proteomic analyses on xylem sap provides insights into the defense response of Gossypium hirsutum against Verticillium dahliae. Journal of Proteomics, 2020, 213, 103599.	2.4	15
15	Overexpression of 3-deoxy-7-phosphoheptulonate synthase gene from Gossypium hirsutum enhances Arabidopsis resistance to Verticillium wilt. Plant Cell Reports, 2015, 34, 1429-1441.	5.6	14
16	Evolution, expression and functional analysis of cultivated allotetraploid cotton DIR genes. BMC Plant Biology, 2021, 21, 89.	3.6	13
17	Genome-wide identification of cyclophilin genes in Gossypium hirsutum and functional characterization of a CYP with antifungal activity against Verticillium dahliae. BMC Plant Biology, 2019, 19, 272.	3.6	12
18	The G-protein α subunit GhGPA positively regulates Gossypium hirsutum resistance to Verticillium dahliae via induction of SA and JA signaling pathways and ROS accumulation. Crop Journal, 2021, 9, 823-833.	5.2	12

Jun Yang

#	Article	IF	CITATIONS
19	ChENODL6 Isoforms from the Phytocyanin Gene Family Regulated Verticillium Wilt Resistance in Cotton. International Journal of Molecular Sciences, 2022, 23, 2913.	4.1	12
20	Genomeâ€wide dissection of hybridization for fiber quality―and yieldâ€related traits in upland cotton. Plant Journal, 2020, 104, 1285-1300.	5.7	9
21	A stable QTL qSalt-A04-1 contributes to salt tolerance in the cotton seed germination stage. Theoretical and Applied Genetics, 2021, 134, 2399-2410.	3.6	8
22	Development and Utilization of Functional Kompetitive Allele-Specific PCR Markers for Key Genes Underpinning Fiber Length and Strength in Gossypium hirsutum L Frontiers in Plant Science, 2022, 13, 853827.	3.6	4
23	Evaluation of the genetic diversity of fibre quality traits in upland cotton (Gossypium hirsutum L.) inferred from phenotypic variations. Journal of Cotton Research, 2019, 2, .	2.5	1