
Maria del Mar Yust

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/313164/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Effect of the support and experimental conditions in the intensity of the multipoint covalent attachment of proteins on glyoxyl-agarose supports: Correlation between enzyme–support linkages and thermal stability. Enzyme and Microbial Technology, 2007, 40, 1160-1166.	1.6	200
2	Purification of an ACE Inhibitory Peptide after Hydrolysis of Sunflower (Helianthus annuusL.) Protein Isolates. Journal of Agricultural and Food Chemistry, 2004, 52, 1928-1932.	2.4	195
3	Production of ace inhibitory peptides by digestion of chickpea legumin with alcalase. Food Chemistry, 2003, 81, 363-369.	4.2	192
4	Determination of tryptophan by high-performance liquid chromatography of alkaline hydrolysates with spectrophotometric detection. Food Chemistry, 2004, 85, 317-320.	4.2	172
5	Brassica carinata protein isolates: chemical composition, protein characterization and improvement of functional properties by protein hydrolysis. Food Chemistry, 2004, 88, 337-346.	4.2	135
6	Improvement of functional properties of chickpea proteins by hydrolysis with immobilised Alcalase. Food Chemistry, 2010, 122, 1212-1217.	4.2	120
7	Interfacial and foaming characteristics of soy globulins as a function of pH and ionic strength. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 309, 202-215.	2.3	117
8	Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment. Application to chymotrypsin. RSC Advances, 2015, 5, 20639-20649.	1.7	104
9	Bovine trypsin immobilization on agarose activated with divinylsulfone: Improved activity and stability via multipoint covalent attachment. Journal of Molecular Catalysis B: Enzymatic, 2015, 117, 38-44.	1.8	93
10	Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin. LWT - Food Science and Technology, 2008, 41, 1973-1977.	2.5	82
11	Affinity Purification of Copper-Chelating Peptides from Sunflower Protein Hydrolysates. Journal of Agricultural and Food Chemistry, 2007, 55, 6509-6514.	2.4	66
12	Hypocholesterolaemic and antioxidant activities of chickpea (<i>Cicer arietinum</i> L.) protein hydrolysates. Journal of the Science of Food and Agriculture, 2012, 92, 1994-2001.	1.7	59
13	Rapeseed protein hydrolysates: a source of HIV protease peptide inhibitors. Food Chemistry, 2004, 87, 387-392.	4.2	58
14	Obtaining of Brassica carinata protein hydrolysates enriched in bioactive peptides using immobilized digestive proteases. Food Research International, 2007, 40, 931-938.	2.9	57
15	Anti-inflammatory activity of lupine (Lupinus angustifolius L.) protein hydrolysates in THP-1-derived macrophages. Journal of Functional Foods, 2014, 8, 224-233.	1.6	53
16	Effect of Enzymatic Treatment of Extracted Sunflower Proteins on Solubility, Amino Acid Composition, and Surface Activity. Journal of Agricultural and Food Chemistry, 2005, 53, 8038-8045.	2.4	52
17	Sunflower Protein Hydrolysates Reduce Cholesterol Micellar Solubility. Plant Foods for Human Nutrition, 2009, 64, 86-93.	1.4	52
18	Affinity Purification of Copper Chelating Peptides from Chickpea Protein Hydrolysates. Journal of Agricultural and Food Chemistry, 2007, 55, 3949-3954.	2.4	51

Maria del Mar Yust

#	Article	IF	CITATIONS
19	Limited Enzymatic Hydrolysis Can Improve the Interfacial and Foaming Characteristics of β-Conglycinin. Journal of Agricultural and Food Chemistry, 2007, 55, 1536-1545.	2.4	45
20	Production and characterization of casein hydrolysates with a high amino acid Fischer's ratio using immobilized proteases. International Dairy Journal, 2004, 14, 527-533.	1.5	44
21	Affinity Purification of Angiotensin Converting Enzyme Inhibitory Peptides Using Immobilized ACE. Journal of Agricultural and Food Chemistry, 2006, 54, 7120-7124.	2.4	42
22	Immobilization of Angiotensin-Converting Enzyme on Glyoxyl-Agarose. Journal of Agricultural and Food Chemistry, 2006, 54, 4641-4645.	2.4	41
23	GPETAFLR: A new anti-inflammatory peptide from Lupinus angustifolius L. protein hydrolysate. Journal of Functional Foods, 2015, 18, 358-367.	1.6	39
24	Stabilization of Enzymes by Multipoint Covalent Attachment on Aldehyde-Supports: 2-Picoline Borane as an Alternative Reducing Agent. Catalysts, 2018, 8, 333.	1.6	39
25	Lupine protein hydrolysates inhibit enzymes involved in the inflammatory pathway. Food Chemistry, 2014, 151, 141-147.	4.2	38
26	Chickpea protein hydrolysate as a substitute for serum in cell culture. Cytotechnology, 2008, 57, 263-272.	0.7	37
27	Stabilization–immobilization of carboxypeptidase A to aldehyde–agarose gels. Enzyme and Microbial Technology, 2002, 31, 711-718.	1.6	36
28	Stability of sunflower protein hydrolysates in simulated gastric and intestinal fluids and Caco-2 cell extracts. LWT - Food Science and Technology, 2009, 42, 1496-1500.	2.5	35
29	Purification of angiotensin converting enzyme inhibitory peptides from sunflower protein hydrolysates by reverse-phase chromatography following affinity purification. LWT - Food Science and Technology, 2009, 42, 228-232.	2.5	34
30	Lupine protein hydrolysates decrease the inflammatory response and improve the oxidative status in human peripheral lymphocytes. Food Research International, 2019, 126, 108585.	2.9	31
31	Effect of Chickpea Aqueous Extracts, Organic Extracts, and Protein Concentrates on Cell Proliferation. Journal of Medicinal Food, 2004, 7, 122-129.	0.8	27
32	Hydrolysis of chickpea proteins with Flavourzyme immobilized on glyoxyl-agarose gels improves functional properties. Food Science and Technology International, 2013, 19, 217-223.	1.1	21
33	Production ofBrassica carinataProtein Hydrolyzates with a High Fischer's Ratio Using Immobilized Proteases. Journal of Agricultural and Food Chemistry, 2006, 54, 7621-7627.	2.4	19
34	Larval dietary protein complexity affects the regulation of muscle growth and the expression of DNA methyltransferases in Senegalese sole. Aquaculture, 2018, 491, 28-38.	1.7	19
35	Chickpea pa2 albumin binds hemin. Plant Science, 2005, 168, 1109-1114.	1.7	12
36	Partial Purification and Immobilization/Stabilization on Highly Activated Glyoxyl-agarose Supports of Different Proteases from Flavourzyme. Journal of Agricultural and Food Chemistry, 2007, 55, 6503-6508.	2.4	9

#	Article	IF	CITATIONS
37	Obtention and uses of protein hydrolysates. Grasas Y Aceites, 2001, 52, .	0.3	8
38	BINDING TO CHICKPEA (CICER ARIETINUM L.) PA2 ALBUMIN ENHANCES HEMIN-DEPENDENT OXIDATIVE REACTIONS. Journal of Food Biochemistry, 2006, 30, 444-452.	1.2	7
39	Biochemistry: Production of High-Added Value Biomolecules for Industrial Uses. BioMed Research International, 2018, 2018, 1-2.	0.9	1
40	Production and uses of protein concentrates and isolates. Grasas Y Aceites, 2001, 52, .	0.3	0