Nicolas H Voelcker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3131267/publications.pdf

Version: 2024-02-01

484 papers 19,213 citations

65 h-index 109 g-index

497 all docs 497
docs citations

497 times ranked 22693 citing authors

#	Article	IF	CITATIONS
1	Transdermal Electrochemical Monitoring of Glucose via Highâ€Density Silicon Microneedle Array Patch. Advanced Functional Materials, 2022, 32, 2009850.	14.9	66
2	Next Generation Cell Culture Tools Featuring Micro―and Nanotopographies for Biological Screening. Advanced Functional Materials, 2022, 32, 2100881.	14.9	14
3	Cellular nanotechnologies: Orchestrating cellular processes by engineering silicon nanowires architectures., 2022,, 231-278.		7
4	Biosensors and Pointâ€ofâ€Care Devices for Bacterial Detection: Rapid Diagnostics Informing Antibiotic Therapy. Advanced Healthcare Materials, 2022, 11, e2101546.	7.6	23
5	Real-time detection of per-fluoroalkyl substance (PFAS) self-assembled monolayers in nanoporous interferometers. Sensors and Actuators B: Chemical, 2022, 355, 131340.	7.8	5
6	Recent Fundamental and Technological Progress in Microâ€nanotechnologies. Advanced Functional Materials, 2022, 32, .	14.9	0
7	Next Generation Cell Culture Tools Featuring Microâf-and Nanotopographies for Biological Screening (Adv. Funct. Mater. 3/2022). Advanced Functional Materials, 2022, 32, .	14.9	1
8	The Australian National Fabrication Facility: Micro/nanotechnologies from Concept to Translation to End Users. Advanced Functional Materials, 2022, 32, .	14.9	0
9	Transdermal Electrochemical Monitoring of Glucose via Highâ€Density Silicon Microneedle Array Patch (Adv. Funct. Mater. 3/2022). Advanced Functional Materials, 2022, 32, .	14.9	2
10	Colorimetric Detection of Extracellular Hydrogen Peroxide Using an Integrated Microfluidic Device. Analytical Chemistry, 2022, 94, 1726-1732.	6.5	14
11	Polymeric Nanoneedle Arrays Mediate Stiffnessâ€Independent Intracellular Delivery (Adv. Funct. Mater.) Tj ETQq1	1,0.78431 14.7	.4 rgBT /Ove
12	Industry Viable Electrochemical DNA Detection Sensor Architecture via a Stem-Loop Methylene Blue Redox Reporter and Rapid In Situ Probe Immobilization Method for Pharmacogenetic Biomarker Testing Application. Journal of the Electrochemical Society, 2022, 169, 017508.	2.9	0
13	Integrated microfluidic device to monitor unseen Escherichia coli contamination in mammalian cell culture. Sensors and Actuators B: Chemical, 2022, 359, 131522.	7.8	3
14	Biosensors and Pointâ€ofâ€Care Devices for Bacterial Detection: Rapid Diagnostics Informing Antibiotic Therapy (Adv. Healthcare Mater. 3/2022). Advanced Healthcare Materials, 2022, 11, .	7.6	0
15	Silicon Micropillar Array-Based Wearable Sweat Glucose Sensor. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2401-2410.	8.0	26
16	Theranostic nanoparticles for the management of thrombosis. Theranostics, 2022, 12, 2773-2800.	10.0	12
17	The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23066-23101.	8.0	12
18	Designing Electrochemical Biosensing Platforms Using Layered Carbon-Stabilized Porous Silicon Nanostructures. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15565-15575.	8.0	10

#	Article	IF	CITATIONS
19	A synthetic lipopeptide targeting top-priority multidrug-resistant Gram-negative pathogens. Nature Communications, 2022, 13, 1625.	12.8	53
20	Porous Silicon Nanocarriers with Stimulusâ€Cleavable Linkers for Effective Cancer Therapy. Advanced Healthcare Materials, 2022, 11, e2200076.	7.6	11
21	Changing Fate: Reprogramming Cells via Engineered Nanoscale Delivery Materials. Advanced Materials, 2022, 34, e2108757.	21.0	9
22	Clinical Sphingolipids Pathway in Parkinson's Disease: From GCase to Integrated-Biomarker Discovery. Cells, 2022, 11, 1353.	4.1	7
23	Attachment of endothelial colony-forming cells onto a surface bearing immobilized anti-CD34 antibodies: Specific CD34 binding versus nonspecific binding. Biointerphases, 2022, 17, 031003.	1.6	1
24	Electrochemical Biosensors Based on Convectively Assembled Colloidal Crystals. Biosensors, 2022, 12, 480.	4.7	1
25	Porous polymeric membranes: fabrication techniques and biomedical applications. Journal of Materials Chemistry B, 2021, 9, 2129-2154.	5.8	56
26	Amplification-free electrochemiluminescence molecular beacon-based microRNA sensing using a mobile phone for detection. Sensors and Actuators B: Chemical, 2021, 330, 129261.	7.8	29
27	Patientâ€Derived Prostate Cancer Explants: A Clinically Relevant Model to Assess siRNAâ€Based Nanomedicines. Advanced Healthcare Materials, 2021, 10, 2001594.	7.6	9
28	Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nature Nanotechnology, 2021, 16, 37-46.	31.5	129
29	Engineering Fluorescent Gold Nanoclusters Using Xanthate-Functionalized Hydrophilic Polymers: Toward Enhanced Monodispersity and Stability. Nano Letters, 2021, 21, 476-484.	9.1	36
30	A Regenerable Biosensing Platform for Bacterial Toxins. Biomacromolecules, 2021, 22, 441-453.	5.4	8
31	Formation and biofunctionalisation of polymer photonic crystals by replica moulding from porous silicon. Materials Letters, 2021, 284, 128907.	2.6	1
32	Nanobody-displaying porous silicon nanoparticles for the co-delivery of siRNA and doxorubicin. Biomaterials Science, 2021, 9, 133-147.	5.4	29
33	A MACEing silicon: Towards single-step etching of defined porous nanostructures for biomedicine. Progress in Materials Science, 2021, 116, 100636.	32.8	65
34	Precision Surface Microtopography Regulates Cell Fate via Changes to Actomyosin Contractility and Nuclear Architecture. Advanced Science, 2021, 8, 2003186.	11.2	41
35	Effectiveness of porous silicon nanoparticle treatment at inhibiting the migration of a heterogeneous glioma cell population. Journal of Nanobiotechnology, 2021, 19, 60.	9.1	9
36	Optically transparent vertical silicon nanowire arrays for live-cell imaging. Journal of Nanobiotechnology, 2021, 19, 51.	9.1	15

3

#	Article	IF	Citations
37	ELOVL5 Is a Critical and Targetable Fatty Acid Elongase in Prostate Cancer. Cancer Research, 2021, 81, 1704-1718.	0.9	44
38	Impact of resveratrolâ€mediated increase in uterine artery blood flow on fetal haemodynamics, blood pressure and oxygenation in sheep. Experimental Physiology, 2021, 106, 1166-1180.	2.0	6
39	Development of Polymeric Nanoparticles for Blood–Brain Barrier Transfer—Strategies and Challenges. Advanced Science, 2021, 8, 2003937.	11.2	143
40	Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. IScience, 2021, 24, 102287.	4.1	68
41	Carbon-stabilized porous silicon as novel voltammetric sensor platforms. Electrochimica Acta, 2021, 377, 138077.	5.2	9
42	Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes. Nature Nanotechnology, 2021, 16, 926-932.	31.5	62
43	Recent Advances in Chemical Biology of Mitochondria Targeting. Frontiers in Chemistry, 2021, 9, 683220.	3.6	26
44	Vertically Aligned Nanostructured Topographies for Human Neural Stem Cell Differentiation and Neuronal Cell Interrogation. Advanced Therapeutics, 2021, 4, 2100061.	3.2	13
45	Reprint of: A MACEing silicon: Towards single-step etching of defined porous nanostructures for biomedicine. Progress in Materials Science, 2021, 120, 100817.	32.8	5
46	Engineering Micro–Nanomaterials for Biomedical Translation. Advanced NanoBiomed Research, 2021, 1, 2100002.	3.6	20
47	Overcoming Barriers: Clinical Translation of siRNA Nanomedicines. Advanced Therapeutics, 2021, 4, 2100108.	3.2	14
48	Tutorial: using nanoneedles for intracellular delivery. Nature Protocols, 2021, 16, 4539-4563.	12.0	47
49	Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydrate Polymers, 2021, 272, 118491.	10.2	100
50	Electrochemical immunosensor for breast cancer biomarker detection using high-density silicon microneedle array. Biosensors and Bioelectronics, 2021, 192, 113496.	10.1	53
51	Risk assessment on-a-chip: a cell-based microfluidic device for immunotoxicity screening. Nanoscale Advances, 2021, 3, 682-691.	4.6	9
52	Compartmentalized microfluidic chambers enable long-term maintenance and communication between human pluripotent stem cell-derived forebrain and midbrain neurons. Lab on A Chip, 2021, 21, 4016-4030.	6.0	9
53	Stimulus-cleavable chemistry in the field of controlled drug delivery. Chemical Society Reviews, 2021, 50, 4872-4931.	38.1	93
54	The Requirement of Genetic Diagnostic Technologies for Environmental Surveillance of Antimicrobial Resistance. Sensors, 2021, 21, 6625.	3.8	2

#	Article	IF	CITATIONS
55	Bright Future of Gold Nanoclusters in Theranostics. ACS Applied Materials & Samp; Interfaces, 2021, 13, 49581-49588.	8.0	35
56	Engineered nano-bio interfaces for intracellular delivery and sampling: Applications, agency and artefacts. Materials Today, 2020, 33, 87-104.	14.2	40
57	Skin in the diagnostics game: Wearable biosensor nano- and microsystems for medical diagnostics. Nano Today, 2020, 30, 100828.	11.9	106
58	Capturing instructive cues of tissue microenvironment by silica bioreplication. Acta Biomaterialia, 2020, 102, 114-126.	8.3	9
59	Enhanced electrochemical sensing performance by in situ electrocopolymerization of pyrrole and thiophene-grafted chitosan. International Journal of Biological Macromolecules, 2020, 143, 582-593.	7. 5	19
60	Vertically configured nanostructure-mediated electroporation: a promising route for intracellular regulations and interrogations. Materials Horizons, 2020, 7, 2810-2831.	12.2	22
61	Modulation of substrate van der Waals forces using varying thicknesses of polymer overlayers. Journal of Colloid and Interface Science, 2020, 580, 690-699.	9.4	4
62	<i>In Situ</i> Surface Modification of Microfluidic Blood–Brain-Barriers for Improved Screening of Small Molecules and Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56753-56766.	8.0	36
63	High-Aspect-Ratio SU-8-Based Optofluidic Device for Ammonia Detection in Cell Culture Media. ACS Sensors, 2020, 5, 2523-2529.	7.8	14
64	Microfluidic Electrochemical Sensor for Cerebrospinal Fluid and Blood Dopamine Detection in a Mouse Model of Parkinson's Disease. Analytical Chemistry, 2020, 92, 12347-12355.	6.5	68
65	Efficient Transmission Electron Microscopy Characterization of Cell–Nanostructure Interfacial Interactions. Journal of the American Chemical Society, 2020, 142, 15649-15653.	13.7	18
66	Fluorocarbon Plasma Gas Passivation Enhances Performance of Porous Silicon for Desorption/Ionization Mass Spectrometry. ACS Sensors, 2020, 5, 3226-3236.	7.8	6
67	Emerging Roles of 1D Vertical Nanostructures in Orchestrating Immune Cell Functions. Advanced Materials, 2020, 32, e2001668.	21.0	45
68	Highly Selective Nanostructured Electrochemical Sensor Utilizing Densely Packed Ultrathin Gold Nanowires Film. Electroanalysis, 2020, 32, 1850-1858.	2.9	11
69	Siliconâ€Nanotubeâ€Mediated Intracellular Delivery Enables Ex Vivo Gene Editing. Advanced Materials, 2020, 32, e2000036.	21.0	51
70	Electrochemical Micropyramid Array-Based Sensor for <i>In Situ</i> Monitoring of Dopamine Released from Neuroblastoma Cells. Analytical Chemistry, 2020, 92, 7746-7753.	6.5	49
71	Surface-Grafted Hyperbranched Polyglycerol Coating: Varying Extents of Fouling Resistance across a Range of Proteins and Cells. ACS Applied Bio Materials, 2020, 3, 3718-3730.	4.6	8
72	Enzyme-like electrocatalysis from 2D gold nanograss-nanocube assemblies. Journal of Colloid and Interface Science, 2020, 575, 24-34.	9.4	6

#	Article	IF	CITATIONS
73	Rapid Detection of Anabolic and Narcotic Doping Agents in Saliva and Urine By Means of Nanostructured Silicon SALDI Mass Spectrometry. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31195-31204.	8.0	27
74	Editorial: Advances in Porous Semiconductor Research. Frontiers in Chemistry, 2020, 8, 122.	3.6	1
75	Porous Alumina Membrane-Based Electrochemical Biosensor for Protein Biomarker Detection in Chronic Wounds. Frontiers in Chemistry, 2020, 8, 155.	3.6	20
76	Tailor-engineered plasmonic single-lattices: harnessing localized surface plasmon resonances for visible-NIR light-enhanced photocatalysis. Catalysis Science and Technology, 2020, 10, 3195-3211.	4.1	12
77	Deconstructing, Replicating, and Engineering Tissue Microenvironment for Stem Cell Differentiation. Tissue Engineering - Part B: Reviews, 2020, 26, 540-554.	4.8	11
78	Transferrin-targeted porous silicon nanoparticles reduce glioblastoma cell migration across tight extracellular space. Scientific Reports, 2020, 10, 2320.	3.3	36
79	Facile preparation of tissue engineering scaffolds with pore size gradients using the muesli effect and their application to cell spheroid encapsulation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2495-2504.	3.4	8
80	Targeted camptothecin delivery via silicon nanoparticles reduces breast cancer metastasis. Biomaterials, 2020, 240, 119791.	11.4	73
81	Geometrical Constraints of Poly(diethylene glycol methyl ether methacrylate) Brushes on Spherical Nanoparticles and Cylindrical Nanowires: Implications for Thermoresponsive Brushes on Nanoobjects. ACS Applied Nano Materials, 2020, 3, 3693-3705.	5.0	3
82	Experimental and theoretical demonstrations of ultraviolet absorption enhancement in porous nano-membrane graphene. Carbon, 2019, 155, 65-70.	10.3	17
83	Interfacial Forces at Layered Surfaces: Substrate Electrical Double-Layer Forces Acting through Ultrathin Polymer Coatings. Langmuir, 2019, 35, 11679-11689.	3.5	5
84	Systematic Evaluation of Transferrin-Modified Porous Silicon Nanoparticles for Targeted Delivery of Doxorubicin to Glioblastoma. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33637-33649.	8.0	80
85	Deposition of Aminomalononitrile-Based Films: Kinetics, Chemistry, and Morphology. Langmuir, 2019, 35, 9896-9903.	3.5	26
86	Differentiation of Rat Mesenchymal Stem Cells toward Osteogenic Lineage on Extracellular Matrix Protein Gradients. Advanced Healthcare Materials, 2019, 8, e1900595.	7.6	11
87	Jellyfishâ€Based Smart Wound Dressing Devices Containing In Situ Synthesized Antibacterial Nanoparticles. Advanced Functional Materials, 2019, 29, 1902783.	14.9	39
88	Cellular Deformations Induced by Conical Silicon Nanowire Arrays Facilitate Gene Delivery. Small, 2019, 15, e1904819.	10.0	58
89	Micro―and Nanosystems for Advanced Transdermal Delivery. Advanced Therapeutics, 2019, 2, 1900141.	3.2	18
90	Subcutaneous maternal resveratrol treatment increases uterine artery blood flow in the pregnant ewe and increases fetal but not cardiac growth. Journal of Physiology, 2019, 597, 5063-5077.	2.9	23

#	Article	IF	CITATIONS
91	Mapping insoluble indole metabolites in the gastrointestinal environment of a murine colorectal cancer model using desorption/ionisation on porous silicon imaging. Scientific Reports, 2019, 9, 12342.	3.3	13
92	Multiparameter toxicity screening on a chip: Effects of UV radiation and titanium dioxide nanoparticles on HaCaT cells. Biomicrofluidics, 2019, 13, 044112.	2.4	3
93	Surface radio-mineralisation mediates chelate-free radiolabelling of iron oxide nanoparticles. Chemical Science, 2019, 10, 2592-2597.	7.4	15
94	A fluorogenic probe based on chelation–hydrolysis-enhancement mechanism for visualizing Zn ²⁺ in Parkinson's disease models. Journal of Materials Chemistry B, 2019, 7, 2252-2260.	5.8	20
95	Differential functionalisation of the internal and external surfaces of carbon-stabilised nanoporous silicon. Chemical Communications, 2019, 55, 8001-8004.	4.1	3
96	Magnetic Nanoparticles Enhance Pore Blockage-Based Electrochemical Detection of a Wound Biomarker. Frontiers in Chemistry, 2019, 7, 438.	3.6	11
97	Label-Free Bacterial Toxin Detection in Water Supplies Using Porous Silicon Nanochannel Sensors. ACS Sensors, 2019, 4, 1515-1523.	7.8	40
98	High-adhesion vertically aligned gold nanowire stretchable electrodes <i>via</i> a thin-layer soft nailing strategy. Nanoscale Horizons, 2019, 4, 1380-1387.	8.0	11
99	Maximizing RNA Loading for Gene Silencing Using Porous Silicon Nanoparticles. ACS Applied Materials & Loading for Gene Silencing Using Porous Silicon Nanoparticles. ACS Applied Materials & Loading for Gene Silencing Using Porous Silicon Nanoparticles. ACS Applied Materials & Loading for Gene Silencing Using Porous Silicon Nanoparticles. ACS Applied Materials & Loading for Gene Silencing Using Porous Silicon Nanoparticles. ACS Applied Materials & Loading for Gene Silencing Using Porous Silicon Nanoparticles. ACS Applied Materials & Loading Forous Silicon Nanoparticles.	8.0	26
100	Advances in Microfluidic Blood–Brain Barrier (BBB) Models. Trends in Biotechnology, 2019, 37, 1295-1314.	9.3	160
101	Uptake, depuration and sublethal effects of the neonicotinoid, imidacloprid, exposure in Sydney rock oysters. Chemosphere, 2019, 230, 1-13.	8.2	29
102	Replication of a Tissue Microenvironment by Thermal Scanning Probe Lithography. ACS Applied Materials & Samp; Interfaces, 2019, 11, 18988-18994.	8.0	17
103	Photo-crosslinked coatings based on 2-hydroxypropyl acrylamide for the prevention of biofouling. Journal of Materials Chemistry B, 2019, 7, 3520-3527.	5.8	17
104	Porous Silicon Nanostructures as Effective Faradaic Electrochemical Sensing Platforms. Advanced Functional Materials, 2019, 29, 1809206.	14.9	23
105	Spatially Controlled Surface Modification of Porous Silicon for Sustained Drug Delivery Applications. Scientific Reports, 2019, 9, 1367.	3.3	37
106	Gold microneedles fabricated by casting of gold ink used for urea sensing. Materials Letters, 2019, 243, 50-53.	2.6	56
107	Replica moulded poly(dimethylsiloxane) microwell arrays induce localized endothelial cell immobilization for coculture with pancreatic islets. Biointerphases, 2019, 14, 011002.	1.6	1
108	Recent Progress in Lab-On-a-Chip Systems for the Monitoring of Metabolites for Mammalian and Microbial Cell Research. Sensors, 2019, 19, 5027.	3.8	18

#	Article	IF	Citations
109	Porous silicon nanomaterials: recent advances in surface engineering for controlled drug-delivery applications. Nanomedicine, 2019, 14, 3213-3230.	3.3	31
110	Stimulus-Responsive Antibiotic Releasing Systems for the Treatment of Wound Infections. ACS Applied Bio Materials, 2019, 2, 704-716.	4.6	21
111	Rational Management of Photons for Enhanced Photocatalysis in Structurally-Colored Nanoporous Anodic Alumina Photonic Crystals. ACS Applied Energy Materials, 2019, 2, 1169-1184.	5.1	23
112	Advances in Porous Silicon–Based Nanomaterials for Diagnostic and Therapeutic Applications. Advanced Therapeutics, 2019, 2, 1800095.	3.2	92
113	Porous Silicon Nanoparticles for Applications in Nano-medicine. , 2019, , 211-226.		1
114	Using Integrated Cancer-on-Chip Platforms to Emulate and Probe Various Cancer Models. , 2019, , $151\text{-}204$.		2
115	Precision nanomedicines for prostate cancer. Nanomedicine, 2018, 13, 803-807.	3.3	7
116	Microfluidic Cell Microarray Platform for High Throughput Analysis of Particle–Cell Interactions. Analytical Chemistry, 2018, 90, 4338-4347.	6.5	19
117	Stable White Lightâ€Emitting Biocomposite Films. Advanced Functional Materials, 2018, 28, 1706967.	14.9	32
118	Nanostructured Electrochemical Biosensors for Label-Free Detection of Water- and Food-Borne Pathogens. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6055-6072.	8.0	115
119	Delivery of siRNA in vitro and in vivo using PEI-capped porous silicon nanoparticles to silence MRP1 and inhibit proliferation in glioblastoma. Journal of Nanobiotechnology, 2018, 16, 38.	9.1	67
120	Methodologies and approaches for the analysis of cell–nanoparticle interactions. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1486.	6.1	36
121	The Essential Elements of a Risk Governance Framework for Current and Future Nanotechnologies. Risk Analysis, 2018, 38, 1321-1331.	2.7	27
122	Advances in Nanoporous Anodic Aluminaâ€Based Biosensors to Detect Biomarkers of Clinical Significance: A Review. Advanced Healthcare Materials, 2018, 7, 1700904.	7.6	70
123	Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an <i>in vitro</i> blood brain barrier model. Biomaterials Science, 2018, 6, 314-323.	5.4	36
124	Optimization of binding B-lymphocytes in a microfluidic channel: surface modification, stasis time and shear response. Biofabrication, 2018, 10, 014101.	7.1	11
125	Manipulating human dendritic cell phenotype and function with targeted porous silicon nanoparticles. Biomaterials, 2018, 155, 92-102.	11.4	34
126	A label-free optical biosensor based on nanoporous anodic alumina for tumour necrosis factor-alpha detection in chronic wounds. Sensors and Actuators B: Chemical, 2018, 257, 116-123.	7.8	36

1

#	Article	IF	CITATIONS
127	Novel peptidylated surfaces for interference-free electrochemical detection of cardiac troponin I. Biosensors and Bioelectronics, 2018, 99, 486-492.	10.1	53
128	Tunable 2D binary colloidal alloys for soft nanotemplating. Nanoscale, 2018, 10, 22189-22195.	5. 6	44
129	Nanoporous Anodic Alumina Photonic Crystals for Optical Chemo- and Biosensing: Fundamentals, Advances, and Perspectives. Nanomaterials, 2018, 8, 788.	4.1	56
130	High-Throughput Assessment and Modeling of a Polymer Library Regulating Human Dental Pulp-Derived Stem Cell Behavior. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38739-38748.	8.0	17
131	Near-Field Mapping of Localized Plasmon Resonances in Metal-Free, Nanomembrane Graphene for Mid-Infrared Sensing Applications. ACS Applied Nano Materials, 2018, 1, 6454-6462.	5.0	12
132	Electrochemical deposition of aminomalonitrile based films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 552, 124-129.	4.7	15
133	Microengineered Bioartificial Liver Chip for Drug Toxicity Screening. Advanced Functional Materials, 2018, 28, 1801825.	14.9	50
134	Mitochondrial imaging in live or fixed tissues using a luminescent iridium complex. Scientific Reports, 2018, 8, 8191.	3.3	29
135	Identification and <i>In Vitro</i> Expansion of Buccal Epithelial Cells. Cell Transplantation, 2018, 27, 957-966.	2.5	2
136	Murine and Non-Human Primate Dendritic Cell Targeting Nanoparticles for <i>in Vivo</i> Generation of Regulatory T-Cells. ACS Nano, 2018, 12, 6637-6647.	14.6	43
137	Electrospun Composites of Polycaprolactone and Porous Silicon Nanoparticles for the Tunable Delivery of Small Therapeutic Molecules. Nanomaterials, 2018, 8, 205.	4.1	13
138	Performance optimisation of porous silicon rugate filter biosensor for the detection of insulin. Sensors and Actuators B: Chemical, 2018, 273, 1313-1322.	7.8	30
139	A complementary forensic †proteo-genomic' approach for the direct identification of biological fluid traces under fingernails. Analytical and Bioanalytical Chemistry, 2018, 410, 6165-6175.	3.7	12
140	Hyaluronic Acid–Modified Porous Silicon Films for the Electrochemical Sensing of Bacterial Hyaluronidase. Macromolecular Rapid Communications, 2018, 39, e1800178.	3.9	12
141	Oxygen-permeable microwell device maintains islet mass and integrity during shipping. Endocrine Connections, 2018, 7, 490-503.	1.9	8
142	Porous silicon-poly(ε-caprolactone) film composites: evaluation of drug release and degradation behavior. Biomedical Microdevices, 2018, 20, 71.	2.8	5
143	Lightâ€Emitting Biocomposites: Stable White Lightâ€Emitting Biocomposite Films (Adv. Funct. Mater.) Tj ETQq1	1 0,78431 14.9	14 rgBT /Over

9

144

Biocompatibility of Porous Silicon., 2018, , 533-545.

#	Article	lF	Citations
145	Wound Management Using Porous Silicon. , 2018, , 1433-1452.		O
146	Cell Culture on Porous Silicon. , 2018, , 713-728.		0
147	Novel protein constituents of pathological ocular pseudoexfoliation syndrome deposits identified with mass spectrometry. Molecular Vision, 2018, 24, 801-817.	1.1	14
148	Non-invasive, in vitro analysis of islet insulin production enabled by an optical porous silicon biosensor. Biosensors and Bioelectronics, 2017, 91, 515-522.	10.1	36
149	Fabrication of Nanostructured Mesoporous Germanium for Application in Laser Desorption lonization Mass Spectrometry. ACS Applied Materials & Spect	8.0	21
150	Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing. Nanotoxicology, 2017, 11, 150-156.	3.0	23
151	Wound Healing: Delivery of Flightless I Neutralizing Antibody from Porous Silicon Nanoparticles Improves Wound Healing in Diabetic Mice (Adv. Healthcare Mater. 2/2017). Advanced Healthcare Materials, 2017, 6, .	7.6	0
152	Electrochemical fingerprints of brominated trihaloacetic acids (HAA3) mixtures in water. Sensors and Actuators B: Chemical, 2017, 247, 70-77.	7.8	17
153	Rapid fabrication of functionalised poly(dimethylsiloxane) microwells for cell aggregate formation. Biomaterials Science, 2017, 5, 828-836.	5.4	17
154	Combined thermal and FTIR analysis of porous silicon based nano-energetic films. RSC Advances, 2017, 7, 7338-7345.	3.6	14
155	Affinity Binding of EMR2 Expressing Cells by Surface-Grafted Chondroitin Sulfate B. Biomacromolecules, 2017, 18, 1697-1704.	5.4	6
156	Singlet Oxygen Detection on a Nanostructured Porous Silicon Thin Film via Photonic Luminescence Enhancements. Langmuir, 2017, 33, 8606-8613.	3.5	15
157	Rapid detection of nicotine from breath using desorption ionisation on porous silicon. Chemical Communications, 2017, 53, 5224-5226.	4.1	8
158	A mass spectrometry-based forensic toolbox for imaging and detecting biological fluid evidence in finger marks and fingernail scrapings. International Journal of Legal Medicine, 2017, 131, 1413-1422.	2.2	11
159	Onâ€demand Antimicrobial Treatment with Antibiotic‣oaded Porous Silicon Capped with a pHâ€Responsive Dual Plasma Polymer Barrier. Chemistry - an Asian Journal, 2017, 12, 1605-1614.	3.3	29
160	3D printed lattices as an activation and expansion platform for T cell therapy. Biomaterials, 2017, 140, 58-68.	11.4	32
161	Dualâ€Action Cancer Therapy with Targeted Porous Silicon Nanovectors. Small, 2017, 13, 1701201.	10.0	31
162	A europium-based â€~off-on' colourimetric detector of singlet oxygen. Inorganica Chimica Acta, 2017, 462, 236-240.	2.4	11

#	Article	IF	Citations
163	Metabolite mapping by consecutive nanostructure and silverâ€assisted mass spectrometry imaging on tissue sections. Rapid Communications in Mass Spectrometry, 2017, 31, 991-1000.	1.5	15
164	Development of flexible supercapacitors using an inexpensive graphene/PEDOT/MnO 2 sponge composite. Materials and Design, 2017, 125, 1-10.	7.0	58
165	Disperse-and-Collect Approach for the Type-Selective Detection of Matrix Metalloproteinases in Porous Silicon Resonant Microcavities. ACS Sensors, 2017, 2, 203-209.	7.8	11
166	Crossed flow microfluidics for high throughput screening of bioactive chemical–cell interactions. Lab on A Chip, 2017, 17, 501-510.	6.0	20
167	IGF-2 coated porous collagen microwells for the culture of pancreatic islets. Journal of Materials Chemistry B, 2017, 5, 220-225.	5.8	13
168	Gold-Decorated Porous Silicon Nanopillars for Targeted Hyperthermal Treatment of Bacterial Infections. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33707-33716.	8.0	47
169	Silver-assisted development and imaging of fingermarks on non-porous and porous surfaces. International Journal of Mass Spectrometry, 2017, 422, 27-31.	1.5	13
170	Nanotopography mediated osteogenic differentiation of human dental pulp derived stem cells. Nanoscale, 2017, 9, 14248-14258.	5.6	31
171	"Bottomâ€up" <i>in situ</i> proteomic differentiation of human and nonâ€human haemoglobins for forensic purposes by matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2017, 31, 1927-1937.	1.5	23
172	Oral Mucosal Epithelial Cells Grown on Porous Silicon Membrane for Transfer to the Rat Eye. Scientific Reports, 2017, 7, 10042.	3.3	8
173	Mechanically Tunable Bioink for 3D Bioprinting of Human Cells. Advanced Healthcare Materials, 2017, 6, 1700255.	7.6	86
174	Plasma Proteome Association and Catalytic Activity of Stealth Polymerâ€Grafted Iron Oxide Nanoparticles. Small, 2017, 13, 1701528.	10.0	27
175	Oxygen-Releasing Coatings for Improved Tissue Preservation. ACS Biomaterials Science and Engineering, 2017, 3, 2384-2390.	5.2	19
176	Challenges and opportunities in the manufacture and expansion of cells for therapy. Expert Opinion on Biological Therapy, 2017, 17, 1221-1233.	3.1	13
177	Novel Gd-Loaded Silicon Nanohybrid: A Potential Epidermal Growth Factor Receptor Expressing Cancer Cell Targeting Magnetic Resonance Imaging Contrast Agent. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42601-42611.	8.0	20
178	Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41159-41167.	8.0	33
179	Single Cell Level Quantification of Nanoparticle–Cell Interactions Using Mass Cytometry. Analytical Chemistry, 2017, 89, 8228-8232.	6.5	30
180	Porous silicon mass spectrometry as an alternative confirmatory assay for compliance testing of methadone. Drug Testing and Analysis, 2017, 9, 769-777.	2.6	17

#	Article	IF	CITATIONS
181	Delivery of Flightless I Neutralizing Antibody from Porous Silicon Nanoparticles Improves Wound Healing in Diabetic Mice. Advanced Healthcare Materials, 2017, 6, 1600707.	7.6	31
182	The Use of Microfluidics in Cytotoxicity and Nanotoxicity Experiments. Micromachines, 2017, 8, 124.	2.9	22
183	{Ni4O4} Cluster Complex to Enhance the Reductive Photocurrent Response on Silicon Nanowire Photocathodes. Nanomaterials, 2017, 7, 33.	4.1	2
184	Embedded top-coat for reducing the effect out of band radiation in EUV lithography., 2017,,.		0
185	A Molecular Probe for the Detection of Polar Lipids in Live Cells. PLoS ONE, 2016, 11, e0161557.	2.5	29
186	Silicon Nanowire Photocathodes for Photoelectrochemical Hydrogen Production. Nanomaterials, 2016, 6, 144.	4.1	12
187	A Combinatorial Protein Microarray for Probing Materials Interaction with Pancreatic Islet Cell Populations. Microarrays (Basel, Switzerland), 2016, 5, 21.	1.4	5
188	Synthesis and Conjugation of Alkyneâ€Functional Hyperbranched Polyglycerols. Macromolecular Chemistry and Physics, 2016, 217, 2252-2261.	2.2	9
189	Electrochemical detection of Nâ€nitrosodimethylamine using a molecular imprinted polymer. Sensors and Actuators B: Chemical, 2016, 237, 613-620.	7.8	30
190	Temperatureâ€Controlled Antimicrobial Release from Poly(diethylene glycol methylether) Tj ETQq0 0 0 rgBT /Ove Growth. Macromolecular Chemistry and Physics, 2016, 217, 2243-2251.	erlock 10 T 2.2	f 50 387 Td (25
191	Nanostructured Siliconâ€Based Fingerprint Dusting Powders for Enhanced Visualization and Detection by Mass Spectrometry. ChemPlusChem, 2016, 81, 258-261.	2.8	4
192	Thiol-Capped Gold Nanoparticles Swell-Encapsulated into Polyurethane as Powerful Antibacterial Surfaces Under Dark and Light Conditions. Scientific Reports, 2016, 6, 39272.	3.3	54
193	Quantitative multimodal analyses of silver nanoparticle-cell interactions: Implications for cytotoxicity. NanoImpact, 2016, 1, 29-38.	4. 5	21
194	Biological effect of LOXL1 coding variants associated with pseudoexfoliation syndrome. Experimental Eye Research, 2016, 146, 212-223.	2.6	25
195	Unraveling the Complex Behavior of AgNPs Driving NP-Cell Interactions and Toxicity to Algal Cells. Environmental Science & Env	10.0	34
196	Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28511-28521.	8.0	464
197	Sensitiveness of Porous Siliconâ€Based Nanoâ€Energetic Films. Propellants, Explosives, Pyrotechnics, 2016, 41, 1029-1035.	1.6	12
198	Toward Multiplexing Detection of Wound Healing Biomarkers on Porous Silicon Resonant Microcavities. Advanced Science, 2016, 3, 1500383.	11.2	33

#	Article	IF	Citations
199	Electroless Gold-Modified Diatoms as Surface-Enhanced Raman Scattering Supports. Nanoscale Research Letters, 2016, 11, 315.	5.7	31
200	Bioengineered Silicon Diatoms: Adding Photonic Features to a Nanostructured Semiconductive Material for Biomolecular Sensing. Nanoscale Research Letters, 2016, 11, 405.	5.7	32
201	Antibacterial properties of silver dendrite decorated silicon nanowires. RSC Advances, 2016, 6, 65976-65987.	3.6	36
202	Investigation of porous silicon photocathodes for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 2016, 41, 19915-19920.	7.1	8
203	Delivery of Flightless I siRNA from Porous Silicon Nanoparticles Improves Wound Healing in Mice. ACS Biomaterials Science and Engineering, 2016, 2, 2339-2346.	5.2	33
204	Porous silicon membrane-modified electrodes for label-free voltammetric detection of MS2 bacteriophage. Biosensors and Bioelectronics, 2016, 80, 47-53.	10.1	37
205	Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching. Nanotechnology, 2016, 27, 075301.	2.6	40
206	A Barley Efflux Transporter Operates in a Na ⁺ -Dependent Manner, as Revealed by a Multidisciplinary Platform. Plant Cell, 2016, 28, 202-218.	6.6	29
207	"Thunderstruck― Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System. ACS Applied Materials & Interfaces, 2016, 8, 4467-4476.	8.0	33
208	Direct identification of forensic body fluids using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. International Journal of Mass Spectrometry, 2016, 397-398, 18-26.	1.5	20
209	Antibacterial properties of nitric oxide-releasing porous silicon nanoparticles. Journal of Materials Chemistry B, 2016, 4, 2051-2058.	5.8	45
210	Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors. Pharmaceutical Research, 2016, 33, 2314-2336.	3.5	46
211	Bioelectronic tongues: New trends and applications in water and food analysis. Biosensors and Bioelectronics, 2016, 79, 608-626.	10.1	91
212	Fabrication and Characterization of a Porous Silicon Drug Delivery System with an Initiated Chemical Vapor Deposition Temperature-Responsive Coating. Langmuir, 2016, 32, 301-308.	3.5	53
213	Fully Tunable Silicon Nanowire Arrays Fabricated by Soft Nanoparticle Templating. Nano Letters, 2016, 16, 157-163.	9.1	98
214	Controlled Delivery of Levothyroxine Using Porous Silicon as a Drug Nanocontainer. Australian Journal of Chemistry, 2016, 69, 204.	0.9	10
215	Sorption of silver nanoparticles to laboratory plastic during (eco)toxicological testing. Nanotoxicology, 2016, 10, 385-390.	3.0	20
216	Towards a subcutaneous optical biosensor based on thermally hydrocarbonised porous silicon. Biomaterials, 2016, 74, 217-230.	11.4	39

#	Article	IF	Citations
217	Synergistic influence of collagen I and BMP 2 drives osteogenic differentiation of mesenchymal stem cells: A cell microarray analysis. Acta Biomaterialia, 2016, 34, 41-52.	8.3	41
218	Porous Silicon-Based Cell Microarrays: Optimizing Human Endothelial Cell-Material Surface Interactions and Bioactive Release. Biomacromolecules, 2016, 17, 3724-3731.	5.4	7
219	Ordered Silicon Pillar Arrays Prepared by Electrochemical Micromachining: Substrates for High-Efficiency Cell Transfection. ACS Applied Materials & Interfaces, 2016, 8, 29197-29202.	8.0	45
220	Wound Management Using Porous Silicon. , 2016, , 1-21.		1
221	Drug Delivery: Silica Nanopills for Targeted Anticancer Drug Delivery (Small 36/2015). Small, 2015, 11, 4625-4625.	10.0	0
222	Mass spectrometry imaging reveals new biological roles for choline esters and Tyrian purple precursors in muricid molluscs. Scientific Reports, 2015, 5, 13408.	3.3	23
223	Maximizing Transfection Efficiency of Vertically Aligned Silicon Nanowire Arrays. Advanced Functional Materials, 2015, 25, 7215-7225.	14.9	103
224	The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells. Journal Physics D: Applied Physics, 2015, 48, 495401.	2.8	16
225	Silica Nanopills for Targeted Anticancer Drug Delivery. Small, 2015, 11, 4626-4631.	10.0	12
226	Insights into Cellular Uptake of Nanoparticles. Current Drug Delivery, 2015, 12, 63-77.	1.6	60
227	Therapeutic Potential of Inorganic Nanoparticles for the Delivery of Monoclonal Antibodies. Journal of Nanomaterials, 2015, 2015, 1-11.	2.7	18
228	Solvent Separating Secondary Metabolites Directly from Biosynthetic Tissue for Surface-Assisted Laser Desorption Ionisation Mass Spectrometry. Marine Drugs, 2015, 13, 1410-1431.	4.6	11
229	A flexible and low power telemetric sensing and monitoring system for chronic wound diagnostics. BioMedical Engineering OnLine, 2015, 14, 17.	2.7	49
230	Rapid, metal-free hydrosilanisation chemistry for porous silicon surface modification. Chemical Communications, 2015, 51, 10640-10643.	4.1	23
231	Microwave Heating of Poly(<i>N</i> -isopropylacrylamide)-Conjugated Gold Nanoparticles for Temperature-Controlled Display of Concanavalin A. ACS Applied Materials & Interfaces, 2015, 7, 27755-27764.	8.0	18
232	Sub-bandage sensing system for remote monitoring of chronic wounds in healthcare. Proceedings of SPIE, 2015, , .	0.8	0
233	Dense Arrays of Uniform Submicron Pores in Silicon and Their Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1160-1169.	8.0	48
234	Surfaceâ€assisted laser desorption ionization mass spectrometry techniques for application in forensics. Mass Spectrometry Reviews, 2015, 34, 627-640.	5.4	85

#	Article	IF	CITATIONS
235	Gradient technologies for optimising biomaterials for cell screening. Cytotherapy, 2015, 17, S72.	0.7	0
236	Development of l-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers. Biosensors and Bioelectronics, 2015, 74, 637-643.	10.1	37
237	Boron-Doped Silicon Diatom Frustules as a Photocathode for Water Splitting. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17381-17387.	8.0	26
238	Tunable Thermoresponsiveness of Resilin via Coassembly with Rigid Biopolymers. Langmuir, 2015, 31, 8882-8891.	3.5	22
239	Materials Displaying Neural Growth Factor Gradients and Applications in Neural Differentiation of Embryoid Body Cells. Advanced Functional Materials, 2015, 25, 2737-2744.	14.9	20
240	Fabrication of stimulus-responsive diatom biosilica microcapsules for antibiotic drug delivery. Journal of Materials Chemistry B, 2015, 3, 4325-4329.	5.8	81
241	Oligonucleotide delivery by chitosan-functionalized porous silicon nanoparticles. Nano Research, 2015, 8, 2033-2046.	10.4	32
242	Real Time Monitoring of Layer-by-Layer Polyelectrolyte Deposition and Bacterial Enzyme Detection in Nanoporous Anodized Aluminum Oxide. Analytical Chemistry, 2015, 87, 3856-3863.	6.5	31
243	DNA Melting and Genotoxicity Induced by Silver Nanoparticles and Graphene. Chemical Research in Toxicology, 2015, 28, 1023-1035.	3.3	73
244	Surface engineering of porous silicon to optimise therapeutic antibody loading and release. Journal of Materials Chemistry B, 2015, 3, 4123-4133.	5.8	30
245	Mass spectrometry imaging of fingerprint sweat on nanostructured silicon. Chemical Communications, 2015, 51, 6088-6091.	4.1	45
246	Bridging the divide between human and environmental nanotoxicology. Nature Nanotechnology, 2015, 10, 835-844.	31.5	68
247	Silver Coating for High-Mass-Accuracy Imaging Mass Spectrometry of Fingerprints on Nanostructured Silicon. Analytical Chemistry, 2015, 87, 11195-11202.	6.5	27
248	Direct detection of illicit drugs from biological fluids by desorption/ionization mass spectrometry with nanoporous silicon microparticles. Analyst, The, 2015, 140, 7926-7933.	3.5	23
249	Porous silicon nanoparticles as a nanophotocathode for photoelectrochemical water splitting. RSC Advances, 2015, 5, 85978-85982.	3.6	20
250	Versatile Particle-Based Route to Engineer Vertically Aligned Silicon Nanowire Arrays and Nanoscale Pores. ACS Applied Materials & Interfaces, 2015, 7, 23717-23724.	8.0	49
251	Applications of zero-valent silicon nanostructures in biomedicine. Nanomedicine, 2015, 10, 2553-2571.	3.3	26
252	A novel pressed porous silicon-polycaprolactone composite as a dual-purpose implant for the delivery of cells and drugs to the eye. Experimental Eye Research, 2015, 139, 123-131.	2.6	23

#	Article	IF	CITATIONS
253	Rhodamine-Functionalized Graphene Quantum Dots for Detection of Fe ³⁺ in Cancer Stem Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23958-23966.	8.0	163
254	Nitric oxide releasing plasma polymer coating with bacteriostatic properties and no cytotoxic side effects. Chemical Communications, 2015, 51, 7058-7060.	4.1	37
255	Small interfering RNA delivery by polyethylenimine-functionalised porous silicon nanoparticles. Biomaterials Science, 2015, 3, 1555-1565.	5.4	35
256	Nanostructured silicon photoelectrodes for solar water electrolysis. Nano Energy, 2015, 17, 308-322.	16.0	45
257	Targeted drug delivery using genetically engineered diatom biosilica. Nature Communications, 2015, 6, 8791.	12.8	226
258	Comparison of the performance of different silicon-based SALDI substrates for illicit drug detection. Talanta, 2015, 132, 494-502.	5.5	40
259	Porous Silicon Nanodiscs for Targeted Drug Delivery. Advanced Functional Materials, 2015, 25, 1137-1145.	14.9	82
260	Screening rat mesenchymal stem cell attachment and differentiation on surface chemistries using plasma polymer gradients. Acta Biomaterialia, 2015, 11, 58-67.	8.3	44
261	Tailored carbon nanotube immunosensors for the detection of microbial contamination. Biosensors and Bioelectronics, 2015, 67, 642-648.	10.1	31
262	Non-viral gene therapy that targets motor neurons in vivo. Frontiers in Molecular Neuroscience, 2014, 7, 80.	2.9	20
263	Cancer-targeting siRNA delivery from porous silicon nanoparticles. Nanomedicine, 2014, 9, 2309-2321.	3.3	26
264	Radiofrequency-triggered release for on-demand delivery of therapeutics from titania nanotube drug-eluting implants. Nanomedicine, 2014, 9, 1263-1275.	3.3	37
265	An Improved Flexible Telemetry System to Autonomously Monitor Sub-Bandage Pressure and Wound Moisture. Sensors, 2014, 14, 21770-21790.	3.8	32
266	Label-Free <inline-formula> <tex-math notation="TeX">\$hbox{Si}_{3}hbox{N}_{4}\$</tex-math></inline-formula> Photonic Crystal Based Immunosensors for Diagnostic Applications. IEEE Photonics Journal, 2014, 6, 1-7.	2.0	10
267	Biomolecule detection in porous silicon based microcavities <i>via < /i>europium luminescence enhancement. Journal of Materials Chemistry B, 2014, 2, 7694-7703.</i>	5.8	21
268	Applications of modern sensors and wireless technology in effective wound management. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 885-895.	3.4	74
269	Laser shock ignition of porous silicon based nano-energetic films. Journal of Applied Physics, 2014, 116, 054912.	2.5	6
270	Labâ€onâ€aâ€Chipâ€Based Highâ€Throughput Screening of the Genotoxicity of Engineered Nanomaterials. Smal 2014, 10, 2721-2734.	l, _{10.0}	52

#	Article	IF	CITATIONS
271	Porous Silicon Resonant Microcavity Biosensor for Matrix Metalloproteinase Detection. Advanced Functional Materials, 2014, 24, 3639-3650.	14.9	76
272	Calibration of sensors for reliable radio telemetry in a prototype flexible wound monitoring device. Sensing and Bio-Sensing Research, 2014, 2, 23-30.	4.2	8
273	Electrochemical Biosensors Featuring Oriented Antibody Immobilization via Electrografted and Self-Assembled Hydrazide Chemistry. Analytical Chemistry, 2014, 86, 1422-1429.	6.5	46
274	Nanostructured Polystyrene Well Plates Allow Unbiased High-Throughput Characterization of Circulating Tumor Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 20828-20836.	8.0	28
275	Biocompatibility of Porous Silicon. , 2014, , 1-13.		3
276	Surface-assisted laser desorption/ionization mass spectrometry using ordered silicon nanopillar arrays. Analyst, The, 2014, 139, 5999-6009.	3. 5	54
277	A photonic glucose biosensor for chronic wound prognostics. Journal of Materials Chemistry B, 2014, 2, 3972-3983.	5. 8	29
278	Porous silicon–polymer composites for cell culture and tissue engineering applications. , 2014, , 420-469.		6
279	A quantum dot sensitized catalytic porous silicon photocathode. Journal of Materials Chemistry A, 2014, 2, 9478-9481.	10.3	38
280	Subtle Changes in Surface Chemistry Affect Embryoid Body Cell Differentiation: Lessons Learnt from Surface-Bound Amine Density Gradients. Tissue Engineering - Part A, 2014, 20, 1715-1725.	3.1	9
281	Electrochemically prepared nanoporous gold as a SERS substrate with high enhancement. RSC Advances, 2014, 4, 19502-19506.	3.6	11
282	Patterning and Biofunctionalization of Antifouling Hyperbranched Polyglycerol Coatings. Biomacromolecules, 2014, 15, 2735-2743.	5. 4	28
283	Lysine-Appended Polydiacetylene Scaffolds for Human Mesenchymal Stem Cells. Biomacromolecules, 2014, 15, 582-590.	5. 4	27
284	Towards implantable porous silicon biosensors. RSC Advances, 2014, 4, 34768-34773.	3.6	10
285	IGF2: an endocrine hormone to improve islet transplant survival. Journal of Endocrinology, 2014, 221, R41-R48.	2.6	19
286	Lanthanide Luminescence Enhancements in Porous Silicon Resonant Microcavities. ACS Applied Materials & Samp; Interfaces, 2014, 6, 12012-12021.	8.0	49
287	Surface-Initiated Hyperbranched Polyglycerol as an Ultralow-Fouling Coating on Glass, Silicon, and Porous Silicon Substrates. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15243-15252.	8.0	41
288	Silicon diatom frustules as nanostructured photoelectrodes. Chemical Communications, 2014, 50, 10441.	4.1	55

#	Article	IF	Citations
289	Nitric oxide-releasing porous silicon nanoparticles. Nanoscale Research Letters, 2014, 9, 333.	5.7	45
290	Photonic porous silicon as a pH sensor. Nanoscale Research Letters, 2014, 9, 420.	5.7	23
291	Graphene masks as passivation layers in the electrochemical etching of silicon. Journal of Materials Science, 2014, 49, 7819-7823.	3.7	1
292	Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today, 2014, 9, 172-196.	11.9	125
293	Biocompatibility of Porous Silicon. , 2014, , 381-393.		6
294	Cell Culture on Porous Silicon. , 2014, , 481-496.		0
295	Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. Journal of Hazardous Materials, 2013, 261, 534-541.	12.4	158
296	Exploring the mesenchymal stem cell niche using high throughput screening. Biomaterials, 2013, 34, 7601-7615.	11.4	49
297	Surface Engineering for Long-Term Culturing of Mesenchymal Stem Cell Microarrays. Biomacromolecules, 2013, 14, 2675-2683.	5.4	29
298	Ag2SO4 decorated with fluorescent Agn nanoclusters. Applied Surface Science, 2013, 270, 77-81.	6.1	7
299	Study of the optical properties of a thermoresponsive polymer grafted onto porous silicon scaffolds. New Journal of Chemistry, 2013, 37, 228-235.	2.8	42
300	Beta-cyclodextrin decorated nanostructured SERS substrates facilitate selective detection of endocrine disruptorchemicals. Biosensors and Bioelectronics, 2013, 42, 632-639.	10.1	43
301	Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Progress in Materials Science, 2013, 58, 636-704.	32.8	467
302	Templated silver nanocube arrays for single-molecule SERS detection. RSC Advances, 2013, 3, 4288.	3.6	26
303	MALDI MS imaging analysis of apolipoprotein E and lysyl oxidase-like 1 in human lens capsules affected by pseudoexfoliation syndrome. Journal of Proteomics, 2013, 82, 27-34.	2.4	29
304	Fabrication of metal nanoparticle arrays by controlled decomposition of polymer particles. Nanotechnology, 2013, 24, 085304.	2.6	19
305	Drug Delivery: Antibodyâ€Functionalized Porous Silicon Nanoparticles for Vectorization of Hydrophobic Drugs (Adv. Healthcare Mater. 5/2013). Advanced Healthcare Materials, 2013, 2, 626-626.	7.6	2
306	Antibodyâ€Functionalized Porous Silicon Nanoparticles for Vectorization of Hydrophobic Drugs. Advanced Healthcare Materials, 2013, 2, 718-727.	7.6	113

#	Article	IF	Citations
307	Nanostructured biointerfaces created from carbon nanotube patterned porous silicon films. Surface and Coatings Technology, 2013, 224, 49-56.	4.8	7
308	Hyperbranched polyglycerols at the biointerface. Progress in Surface Science, 2013, 88, 213-236.	8.3	26
309	Sensors and imaging for wound healing: A review. Biosensors and Bioelectronics, 2013, 41, 30-42.	10.1	352
310	Interaction of Antibiotics with Lipid Vesicles on Thin Film Porous Silicon Using Reflectance Interferometric Fourier Transform Spectroscopy. Langmuir, 2013, 29, 10279-10286.	3.5	8
311	Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal. Journal of Hazardous Materials, 2013, 260, 330-338.	12.4	125
312	Stem Cells: Surface Bound Amine Functional Group Density Influences Embryonic Stem Cell Maintenance (Adv. Healthcare Mater. 4/2013). Advanced Healthcare Materials, 2013, 2, 624-624.	7.6	0
313	Surface Bound Amine Functional Group Density Influences Embryonic Stem Cell Maintenance. Advanced Healthcare Materials, 2013, 2, 585-590.	7.6	20
314	High-throughput characterisation of osteogenic differentiation of human mesenchymal stem cells using pore size gradients on porous alumina. Biomaterials Science, 2013, 1, 924.	5.4	22
315	Matrix Metalloproteinase Biosensor Based on a Porous Silicon Reflector. Australian Journal of Chemistry, 2013, 66, 1428.	0.9	13
316	The Role of Diatom Nanostructures in Biasing Diffusion to Improve Uptake in a Patchy Nutrient Environment. PLoS ONE, 2013, 8, e59548.	2.5	48
317	Gradients of Al/Al ₂ O ₃ nanostructures for screening mesenchymal stem cell proliferation and differentiation. Open Journal of Regenerative Medicine, 2013, 02, 74-79.	0.9	3
318	Gradient Technology for High-Throughput Screening of Interactions between Cells and Nanostructured Materials. Journal of Nanomaterials, 2012, 2012, 1-7.	2.7	20
319	Characterization of Fiber-Forming Peptides and Proteins by Means of Atomic Force Microscopy. Current Protein and Peptide Science, 2012, 13, 232-257.	1.4	11
320	Screening the attachment and spreading of bone marrow-derived and adipose-derived mesenchymal stem cells on porous silicon gradients. RSC Advances, 2012, 2, 12857.	3.6	31
321	Microplasma arrays: a new approach for maskless and localized patterning of materials surfaces. RSC Advances, 2012, 2, 12007.	3.6	20
322	Electrochemistry-enabled fabrication of orthogonal nanotopography and surface chemistry gradients for high-throughput screening. Lab on A Chip, 2012, 12, 1480.	6.0	37
323	Chemically patterned porous silicon photonic crystals towards internally referenced organic vapour sensors. RSC Advances, 2012, 2, 4620.	3.6	40
324	Mass Spectrometry Imaging on Porous Silicon: Investigating the Distribution of Bioactives in Marine Mollusc Tissues. Analytical Chemistry, 2012, 84, 8996-9001.	6.5	46

#	Article	IF	Citations
325	Polymerization-Amplified Optical DNA Detection on Porous Silicon Templates. ACS Macro Letters, 2012, 1, 919-921.	4.8	26
326	Rapid detection of illicit drugs in neat saliva using desorption/ionization on porous silicon. Talanta, 2012, 99, 791-798.	5.5	47
327	Controlled drug delivery from composites of nanostructured porous silicon and poly(<scp>L</scp> -lactide). Nanomedicine, 2012, 7, 995-1016.	3.3	62
328	Combination of iCVD and Porous Silicon for the Development of a Controlled Drug Delivery System. ACS Applied Materials & Development of a Controlled Drug Delivery System.	8.0	75
329	Aptamer sensor for cocaine using minor groove binder based energy transfer. Analytica Chimica Acta, 2012, 719, 76-81.	5.4	36
330	Investigation of self-assembling proline- and glycine-rich recombinant proteins and peptides inspired by proteins from a symbiotic fungus using atomic force microscopy and circular dichroism spectroscopy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 711-722.	2.3	12
331	Porous silicon-based nanostructured microparticles as degradable supports for solid-phase synthesis and release of oligonucleotides. Nanoscale Research Letters, 2012, 7, 385.	5.7	17
332	Self assembly of bivalent glycolipids on single walled carbon nanotubes and their specific molecular recognition properties. RSC Advances, 2012, 2, 1329.	3.6	11
333	Electrochemical fabrication of nanoporous gold. Journal of Materials Chemistry, 2012, 22, 2952-2957.	6.7	24
334	Clicking dendritic peptides onto single walled carbon nanotubes. RSC Advances, 2012, 2, 1289-1291.	3.6	10
335	Glycoconjugate-functionalized carbon nanotubes in biomedicine. Journal of Materials Chemistry, 2012, 22, 8748.	6.7	34
336	Fabrication and Operation of a Microcavity Plasma Array Device for Microscale Surface Modification. Plasma Processes and Polymers, 2012, 9, 638-646.	3.0	23
337	Porous Silicon Films Micropatterned with Bioelements as Supports for Mammalian Cells. Advanced Functional Materials, 2012, 22, 1158-1166.	14.9	42
338	Screening Mesenchymal Stem Cell Attachment and Differentiation on Porous Silicon Gradients. Advanced Functional Materials, 2012, 22, 3414-3423.	14.9	109
339	Polydopamine Nanoparticles as a New and Highly Selective Biosorbent for the Removal of Copper (II) lons from Aqueous Solutions. Water, Air, and Soil Pollution, 2012, 223, 3535-3544.	2.4	107
340	Human bone material characterization: integrated imaging surface investigation of male fragility fractures. Osteoporosis International, 2012, 23, 1297-1309.	3.1	21
341	Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients. Acta Biomaterialia, 2012, 8, 519-530.	8.3	126
342	Assessing embryonic stem cell response to surface chemistry using plasma polymer gradients. Acta Biomaterialia, 2012, 8, 1739-1748.	8.3	37

#	Article	IF	Citations
343	Electrochemical synthesis of silver oxide nanowires, microplatelets and application as SERS substrate precursors. Electrochimica Acta, 2012, 59, 346-353.	5.2	27
344	Surface modification for PDMSâ€based microfluidic devices. Electrophoresis, 2012, 33, 89-104.	2.4	263
345	Laser-induced micro- and nanostructures at polymer surfaces for applications in cell biology. , 2011, , .		1
346	Gelation and topochemical polymerization of peptide dendrimers. New Journal of Chemistry, 2011, 35, 303-309.	2.8	30
347	High-order graphene oxide nanoarchitectures. Nanoscale, 2011, 3, 3076.	5.6	5
348	Nanoporous alumina-based interferometric transducers ennobled. Nanoscale, 2011, 3, 3109.	5.6	39
349	Fabrication and characterization of porous silicon nanoparticles for siRNA delivery. , 2011, , .		1
350	MALDI-MS-Imaging of Whole Human Lens Capsule. Journal of Proteome Research, 2011, 10, 3522-3529.	3.7	37
351	Dual Silane Surface Functionalization for the Selective Attachment of Human Neuronal Cells to Porous Silicon. Langmuir, 2011, 27, 9497-9503.	3.5	92
352	Chemical and biomolecule patterning on 2D surfaces using atmospheric pressure microcavity plasma array devices. Proceedings of SPIE, $2011, \ldots$	0.8	1
353	New Insights into the Structure of PAMAM Dendrimer/Gold Nanoparticle Nanocomposites. Langmuir, 2011, 27, 6759-6767.	3.5	28
354	Stimulus-Responsiveness and Drug Release from Porous Silicon Films ATRP-Grafted with Poly(<i>N</i> -isopropylacrylamide). Langmuir, 2011, 27, 7843-7853.	3.5	108
355	Micropatterned Arrays of Porous Silicon: Toward Sensory Biointerfaces. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2463-2471.	8.0	43
356	Atomic force microscopy-based antibody recognition imaging of proteins in the pathological deposits in Pseudoexfoliation Syndrome. Ultramicroscopy, 2011, 111, 1055-1061.	1.9	38
357	Interferometric porous silicon transducers using an enzymatically amplified optical signal. Sensors and Actuators B: Chemical, 2011, 160, 341-348.	7.8	50
358	Mesenchymal stem cell attachment to peptide density gradients on porous silicon generated by electrografting. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1440-1445.	1.8	33
359	Design of a Microplasma Device for Spatially Localised Plasma Polymerisation. Plasma Processes and Polymers, 2011, 8, 695-700.	3.0	19
360	Engineering, Characterization and Directional Selfâ€Assembly of Anisotropically Modified Nanocolloids. Small, 2011, 7, 812-819.	10.0	36

#	Article	IF	Citations
361	The Burning Rate of Energetic Films of Nanostructured Porous Silicon. Small, 2011, 7, 3392-3398.	10.0	50
362	Effect of oligoethylene glycol moieties in porous silicon surface functionalisation on protein adsorption and cell attachment. Applied Surface Science, 2011, 257, 6768-6774.	6.1	33
363	Electrochemically prepared porous silver and its application in surface-enhanced Raman scattering. Journal of Electroanalytical Chemistry, 2011, 659, 151-160.	3.8	26
364	Rapid aqueous  click chemistry' using Cu(I)-loaded dendrimers as macromolecular catalysts. Tetrahedron Letters, 2011, 52, 2327-2329.	1.4	23
365	Plasma Polymer and PEG-Based Coatings for DNA, Protein and Cell Microarrays. Methods in Molecular Biology, 2011, 706, 159-170.	0.9	4
366	Generation of reactive oxygen species from porous silicon microparticles in cell culture medium. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1124-1131.	4.0	28
367	AFM study of the interaction of cytochrome P450 2C9 with phospholipid bilayers. Chemistry and Physics of Lipids, 2010, 163, 182-189.	3.2	17
368	Carbon nanotubes initiate the explosion of porous silicon. Materials Letters, 2010, 64, 2517-2519.	2.6	19
369	Cell microarrays for the screening of factors that allow the enrichment of bovine testicular cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2010, 77A, 881-889.	1.5	25
370	Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis, 2010, 31, 2-16.	2.4	692
371	Carbon Nanotubes Anchored to Silicon for Device Fabrication. Advanced Materials, 2010, 22, 557-571.	21.0	27
372	Dressing in Layers: Layering Surface Functionalities in Nanoporous Aluminum Oxide Membranes. Angewandte Chemie - International Edition, 2010, 49, 7933-7937.	13.8	70
373	Development of surface modification techniques for the covalent attachment of insulin-like growth factor-1 (IGF-1) on PECVD silica-coated titanium. Surface and Coatings Technology, 2010, 205, 1630-1635.	4.8	5
374	Evaluation of mesoporous silicon/polycaprolactone composites as ophthalmic implants. Acta Biomaterialia, 2010, 6, 3566-3572.	8.3	71
375	X-ray photoelectron spectroscopy study of the growth kinetics of biomimetically grown hydroxyapatite thin-film coatings. Applied Surface Science, 2010, 256, 7178-7185.	6.1	14
376	Creating gradients of two proteins by differential passive adsorption onto a PEG-density gradient. Biomaterials, 2010, 31, 392-397.	11.4	59
377	Poly(dimethylsiloxane) Surface Modification by Plasma Treatment for DNA Hybridization Applications. Journal of Nanoscience and Nanotechnology, 2010, 10, 7266-7270.	0.9	11
378	Photonic nanostructures for potential applications in cell biology. , 2010, , .		0

#	Article	IF	CITATIONS
379	Material Properties of Lipid Microdomains: Force-Volume Imaging Study of the Effect of Cholesterol on Lipid Microdomain Rigidity. Biophysical Journal, 2010, 99, 834-844.	0.5	39
380	Detecting Protein Aggregates on Untreated Human Tissue Samples byÂAtomic Force Microscopy Recognition Imaging. Biophysical Journal, 2010, 99, 1660-1667.	0.5	32
381	Chemically Grafted Carbon Nanotube Surface Coverage Gradients. Langmuir, 2010, 26, 18468-18475.	3.5	13
382	Combined Immunocapture and Laser Desorption/Ionization Mass Spectrometry on Porous Silicon. Analytical Chemistry, 2010, 82, 4201-4208.	6.5	58
383	Simple surface modification of poly(dimethylsiloxane) for DNA hybridization. Biomicrofluidics, 2010, 4, 046504.	2.4	7
384	Nanoscale structure of lipid domain boundaries. Soft Matter, 2010, 6, 2193.	2.7	11
385	Colloid probe AFM study of thermal collapse and protein interactions of poly(N-isopropylacrylamide) coatings. Soft Matter, 2010, 6, 2657.	2.7	34
386	Sorted cell microarrays as platforms for high-content informational bioassays. Lab on A Chip, 2010, 10, 3413.	6.0	24
387	Fabrication of self-supporting porous silicon membranes and tuning transport properties by surface functionalization. Nanoscale, 2010, 2, 1756.	5.6	51
388	Controlling the surface functionalities of nanoporous alumina membranes. , 2010, , .		0
389	Advances in telemetric continuous intraocular pressure assessment. British Journal of Ophthalmology, 2009, 93, 992-996.	3.9	38
390	Porous silicon biosensors on the advance. Trends in Biotechnology, 2009, 27, 230-239.	9.3	403
391	Diatomaceous Lessons in Nanotechnology and Advanced Materials. Advanced Materials, 2009, 21, 2947-2958.	21.0	342
392	Biomimetic Nanostructures: Diatomaceous Lessons in Nanotechnology and Advanced Materials (Adv.) Tj ETQq0	0 0 rgBT /0	Overlock 10 T
393	Patterned and switchable surfaces for biomolecular manipulation. Acta Biomaterialia, 2009, 5, 2350-2370.	8.3	88
394	The biocompatibility of porous silicon in tissues of the eye. Biomaterials, 2009, 30, 2873-2880.	11.4	299
395	Rapid drug detection in oral samples by porous silicon assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 3543-3548.	1.5	35
396	Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials, 2009, 30, 1827-1850.	11.4	422

#	Article	IF	CITATIONS
397	Multidirectional lateral gradient films with position-dependent photonic signatures made from porous silicon. Optical Materials, 2009, 32, 234-242.	3.6	9
398	New biodegradable materials produced by ring opening polymerisation of poly(I-lactide) on porous silicon substrates. Journal of Colloid and Interface Science, 2009, 332, 336-344.	9.4	38
399	Generation of a stable surface concentration of amino groups on silica coated onto titanium substrates by the plasma enhanced chemical vapour deposition method. Applied Surface Science, 2009, 255, 6846-6850.	6.1	20
400	Multifunctional Polymer Coatings for Cell Microarray Applications. Biomacromolecules, 2009, 10, 1163-1172.	5.4	54
401	Advanced Substrate Fabrication for Cell Microarrays. Biomacromolecules, 2009, 10, 573-579.	5.4	59
402	Nanomechanical Characterization of Phospholipid Bilayer Islands on Flat and Porous Substrates: A Force Spectroscopy Study. Journal of Physical Chemistry B, 2009, 113, 10339-10347.	2.6	28
403	Surface Plasmon Resonance Imaging of Polymer Microarrays to Study Proteinâ 'Polymer Interactions in High Throughput. Langmuir, 2009, 25, 9173-9181.	3.5	34
404	Time-of-Flight-Secondary Ion Mass Spectrometry Study of the Temperature Dependence of Protein Adsorption onto Poly(N-isopropylacrylamide) Graft Coatings. Analytical Chemistry, 2009, 81, 6905-6912.	6.5	20
405	Calcium(II) selectively induces α-synuclein annular oligomers via interaction with the C-terminal domain. Protein Science, 2009, 13, 3245-3252.	7.6	143
406	Silicon–polymer hybrid materials for drug delivery. Future Medicinal Chemistry, 2009, 1, 1051-1074.	2.3	80
407	Nanoporous anodic aluminium oxide membranes with layered surface chemistry. Chemical Communications, 2009, , 3062.	4.1	72
408	Design of a Wireless Intraocular Pressure Monitoring System for a Glaucoma Drainage Implant. IFMBE Proceedings, 2009, , 198-201.	0.3	1
409	Laser-based patterning for transfected cell microarrays. Biofabrication, 2009, 1, 045003.	7.1	9
410	Sequenceâ€Addressable DNA Logic. Small, 2008, 4, 427-431.	10.0	73
411	Catalyzed Oxidative Corrosion of Porous Silicon Used as an Optical Transducer for Ligand–Receptor Interactions. ChemBioChem, 2008, 9, 1776-1786.	2.6	37
412	Comparison of the binding mode of plasmid DNA to allylamine plasma polymer and poly(ethylene) Tj ETQq0 0 0 0	rgBT_/Over	ogk 10 Tf 50
413	Plasma enhanced chemical vapour deposition of silica onto titanium: Analysis of surface chemistry, morphology and hydroxylation. Surface Science, 2008, 602, 2402-2411.	1.9	14
414	Micropatterning of Porous Silicon Films by Direct Laser Writing. Biotechnology Progress, 2008, 22, 1388-1393.	2.6	61

#	Article	IF	CITATIONS
415	Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells. Experimental Cell Research, 2008, 314, 789-800.	2.6	109
416	Lateral heterogeneities in supported bilayers from pure and mixed phosphatidylethanolamine demonstrating hydrogen bonding capacity. Biointerphases, 2008, 3, 96-104.	1.6	20
417	Concurrent elution of calcium phosphate and macromolecules from alginate/chitosan hydrogel coatings. Biointerphases, 2008, 3, 105-116.	1.6	7
418	Thermosensitive Copolymer Coatings with Enhanced Wettability Switching. Langmuir, 2008, 24, 4238-4244.	3. 5	43
419	The influence of pore size and oxidizing agent on the energetic properties of porous silicon. Proceedings of SPIE, 2008, , .	0.8	8
420	Preparation and characterization of multiwalled carbon nanotube (MWCNT)/polymer nanostructured materials. Proceedings of SPIE, 2008, , .	0.8	1
421	One-step surface modification of poly(dimethylsiloxane) by undecylenic acid., 2008,,.		2
422	Designing superhydrophobic surfaces using fluorosilsesquioxane-urethane hybrid and porous silicon gradients., 2008,,.		0
423	High resolution chemical mapping of biomimetic membranes by force volume imaging. , 2008, , .		1
424	Preparation and characterisation of vertically aligned single-walled carbon nanotube arrays on porous silicon. , 2008, , .		1
425	Magnetic and fluorescence-encoded polystyrene microparticles for cell separation. , 2008, , .		0
426	Pore spanning lipid bilayers on silanised nanoporous alumina membranes. Proceedings of SPIE, 2008, , .	0.8	5
427	Preparation of chemical gradients on porous silicon by a dip coating method. Proceedings of SPIE, 2008, , .	0.8	4
428	Development of a wireless intra-ocular pressure monitoring system for incorporation into a therapeutic glaucoma drainage implant. , 2008, , .		1
429	Diatom culture media contain extracellular silica nanoparticles which form opalescent films. , 2008, , .		3
430	Porous silicon biosensor for the detection of autoimmune diseases. Proceedings of SPIE, 2007, 6799, 66.	0.8	3
431	Electro-induced protein deposition on low-fouling surfaces. Smart Materials and Structures, 2007, 16, 2222-2228.	3.5	20
432	Interfacing porous silicon with biomolecules. , 2007, , .		1

#	ARTICLE	IF	CITATIONS
433	Enhancement of reverse transfection efficiency by combining stimulated DNA surface desorption and electroporation. Proceedings of SPIE, 2007, , .	0.8	0
434	Control over wettability via surface modification of porous gradients. Proceedings of SPIE, 2007, , .	0.8	11
435	Preparation of two-directional gradient surfaces for the analysis of cell-surface interactions. , 2007,		2
436	Synthesis and Stereoselective DNA Binding Abilities of New Optically Active Open-Chain Polyamines. Journal of Organic Chemistry, 2007, 72, 1924-1930.	3.2	11
437	Nanoscale eluting coatings based on alginate/chitosan hydrogels. Biointerphases, 2007, 2, 95-104.	1.6	15
438	AFM Nanoindentations of Diatom Biosilica Surfaces. Langmuir, 2007, 23, 5014-5021.	3.5	130
439	Rapid Fabrication of Micro―and Nanoscale Patterns by Replica Molding from Diatom Biosilica. Advanced Functional Materials, 2007, 17, 2439-2446.	14.9	136
440	A new approach to the immobilisation of poly(ethylene oxide) for the reduction of non-specific protein adsorption on conductive substrates. Surface Science, 2007, 601, 1716-1725.	1.9	24
441	Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms. Journal of Porous Materials, 2007, 14, 61-69.	2.6	93
442	Controlled pore structure modification of diatoms by atomic layer deposition of TiO2. Journal of Materials Chemistry, 2006, 16, 4029.	6.7	116
443	Pore Architecture of Diatom Frustules: Potential Nanostructured Membranes for Molecular and Particle Separations. Journal of Nanoscience and Nanotechnology, 2006, 6, 982-989.	0.9	185
444	Silica nanostructure formation from synthetic R5 peptide. , 2006, 6413, 186.		0
445	Fabrication of gold nanostructures by templating from porous diatom frustules. New Journal of Chemistry, 2006, 30, 908.	2.8	84
446	Biosensing Using Lipid Bilayers Suspended on Porous Silicon. Langmuir, 2006, 22, 7078-7083.	3.5	72
447	Evaluation of α-d-mannopyranoside glycolipid micelles–lectin interactions by surface plasmon resonance method. Glycobiology, 2006, 16, 822-832.	2.5	41
448	MALDIâ^'TOF MS and DIOSâ^'MS Investigation of the Degradation and Discoloration of Poly(ethylene) Tj ETQq0 () 0 ₄ .8BT /C	Overlock 10 T
449	A platform for the advanced spatial and temporal control of biomolecules. , 2006, , .		3
450	Application of nanostructured biochips for efficient cell transfection microarrays., 2006,,.		1

#	Article	IF	Citations
451	A novel surface modification approach for protein and cell microarrays. , 2006, , .		O
452	Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials, 2006, 27, 4538-4546.	11.4	278
453	XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings. Applied Surface Science, 2006, 253, 2644-2651.	6.1	53
454	Spatially controlled electro-stimulated DNA adsorption and desorption for biochip applications. Biosensors and Bioelectronics, 2006, 21, 2137-2145.	10.1	38
455	Surface manipulation of biomolecules for cell microarray applications. Trends in Biotechnology, 2006, 24, 471-477.	9.3	76
456	Non-Covalent Polyvalent Ligands by Self-Assembly of Small Glycodendrimers: A Novel Concept for the Inhibition of Polyvalent Carbohydrate-Protein Interactions In Vitro and In Vivo. Chemistry - A European Journal, 2006, 12, 99-117.	3.3	35
457	Thin calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid. Journal of Biomedical Materials Research - Part A, 2006, 76A, 347-355.	4.0	79
458	Adsorption of bisphosphonate onto hydroxyapatite using a novel co-precipitation technique for bone growth enhancement. Journal of Biomedical Materials Research - Part A, 2006, 79A, 271-281.	4.0	32
459	Microarrays for the evaluation of cell-biomaterial surface interactions. , 2006, , .		5
460	Switchable surface coatings for control over protein adsorption. , 2006, , .		7
461	Development of an electro-responsive platform for the controlled transfection of mammalian cells. , 2005, , .		1
462	Characterisation of porous silicon/poly(L -lactide) composites prepared using surface initiated ring opening polymerisation. , 2005, , .		7
463	Solvent dependent selective alkylation of a bis(sulfonamide) for the synthesis of a DNA-binding chiral polyamine. Tetrahedron Letters, 2005, 46, 2783-2787.	1.4	6
464	Growth Kinetics and Modeling of ZnO Nanoparticles. Journal of Chemical Education, 2005, 82, 775.	2.3	56
465	Ultrathin polytyramine films by electropolymerisation on highly doped p-type silicon electrodes. Surface Science, 2005, 584, 245-257.	1.9	19
466	Annular alpha-synuclein oligomers are potentially toxic agents in alpha-synucleinopathy. Hypothesis. Neurotoxicity Research, 2005, 7, 59-67.	2.7	66
467	Monitoring EDTA and endogenous metabolite biomarkers from serum with mass spectrometry. Spectroscopy, 2005, 19, 137-146.	0.8	10
468	Porous silicon microparticles as an alternative support for solid phase DNA synthesis., 2005,,.		3

#	Article	lF	Citations
469	Switchable coatings for biomedical applications. , 2005, , .		3
470	Fabrication of gold nanorod arrays by templating from porous alumina. Nanotechnology, 2005, 16, 2275-2281.	2.6	55
471	Complex gold nanostructures derived by templating from diatom frustules. Chemical Communications, 2005, , 4905.	4.1	66
472	Annular alpha-synuclein species from purified multiple system atrophy inclusions. Journal of Neurochemistry, 2004, 90, 502-512.	3.9	70
473	DNA hybridization-enhanced porous silicon corrosion: mechanistic investigations and prospect for optical interferometric biosensing. Tetrahedron, 2004, 60, 11259-11267.	1.9	91
474	A biochip platform for cell transfection assays. Biosensors and Bioelectronics, 2004, 19, 1395-1400.	10.1	53
475	Liquid-Crystal Displays: Fabrication and Measurement of a Twisted Nematic Liquid-Crystal Cell. Journal of Chemical Education, 2004, 81, 854.	2.3	16
476	DNA-Based Photonic Logic Gates:Â AND, NAND, and INHIBIT. Journal of the American Chemical Society, 2003, 125, 346-347.	13.7	254
477	A microarray platform for the creation of a matrix of site-specific transformed cells. , 2002, , .		2
478	Functionalization of silicone rubber for the covalent immobilization of fibronectin. Journal of Materials Science: Materials in Medicine, 2001, 12, 111-119.	3.6	51
479	Synthesis of heterotelechelic poly(ethylene glycol)s and their characterization by MALDI-TOF-MS. Macromolecular Chemistry and Physics, 1999, 200, 1363-1373.	2.2	20
480	Polymeric Nanoneedle Arrays Mediate Stiffnessâ€Independent Intracellular Delivery. Advanced Functional Materials, 0, , 2104828.	14.9	15
481	Capturing Instructive Cues of Tissue Microenvironment by Silica Bioreplication. SSRN Electronic Journal, O, , .	0.4	0
482	Hierarchical hollow metal nanostructure arrays for selective CO2 conversion. Materials Advances, $0, , .$	5 . 4	1
483	CHAPTER 7. The Potential of Modified Diatom Frustules for Solar Energy Conversion. RSC Nanoscience and Nanotechnology, 0, , 150-174.	0.2	0
484	The start-ups taking nanoneedles into the clinic. Nature Nanotechnology, 0, , .	31.5	6