
Gustavo Puras Ochoa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3131254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanodiamond Integration into Niosomes as an Emerging and Efficient Gene Therapy Nanoplatform for Central Nervous System Diseases. ACS Applied Materials & Interfaces, 2022, 14, 13665-13677.	8.0	11
2	Therapeutic Opportunities and Delivery Strategies for Brain Revascularization in Stroke, Neurodegeneration, and Aging. Pharmacological Reviews, 2022, 74, 439-461.	16.0	12
3	Current Insights into 3D Bioprinting: An Advanced Approach for Eye Tissue Regeneration. Pharmaceutics, 2021, 13, 308.	4.5	29
4	Design and Validation of a Process Based on Cationic Niosomes for Gene Delivery into Novel Urine-Derived Mesenchymal Stem Cells. Pharmaceutics, 2021, 13, 696.	4.5	3
5	Mesenchymal Stem Cells as a Gene Delivery Tool: Promise, Problems, and Prospects. Pharmaceutics, 2021, 13, 843.	4.5	15
6	How Far Are Non-Viral Vectors to Come of Age and Reach Clinical Translation in Gene Therapy?. International Journal of Molecular Sciences, 2021, 22, 7545.	4.1	29
7	Sphingolipid extracts enhance gene delivery of cationic lipid vesicles into retina and brain. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 169, 103-112.	4.3	9
8	Correlation between Biophysical Properties of Niosomes Elaborated with Chloroquine and Different Tensioactives and Their Transfection Efficiency. Pharmaceutics, 2021, 13, 1787.	4.5	7
9	Origen y trayectoria del equipo docente para la Enseñanza Multidisciplinar Biosanitaria (IKAsasun). Revista EspaÑola De EducaciÓn MÉdica, 2021, 2, .	0.1	0
10	Non-viral mediated gene therapy in human cystic fibrosis airway epithelial cells recovers chloride channel functionality. International Journal of Pharmaceutics, 2020, 588, 119757.	5.2	15
11	Niosome-Based Approach for In Situ Gene Delivery to Retina and Brain Cortex as Immune-Privileged Tissues. Pharmaceutics, 2020, 12, 198.	4.5	34
12	Brain Angiogenesis Induced by Nonviral Gene Therapy with Potential Therapeutic Benefits for Central Nervous System Diseases. Molecular Pharmaceutics, 2020, 17, 1848-1858.	4.6	9
13	Cationic niosome-based hBMP7 gene transfection of neuronal precursor NT2 cells to reduce the migration of glioma cells in vitro. Journal of Drug Delivery Science and Technology, 2019, 53, 101219.	3.0	10
14	Cationic Niosomes as Non-Viral Vehicles for Nucleic Acids: Challenges and Opportunities in Gene Delivery. Pharmaceutics, 2019, 11, 50.	4.5	59
15	Gene delivery to the rat retina by non-viral vectors based on chloroquine-containing cationic niosomes. Journal of Controlled Release, 2019, 304, 181-190.	9.9	38
16	Non-viral vectors based on cationic niosomes and minicircle DNA technology enhance gene delivery efficiency for biomedical applications in retinal disorders. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 308-318.	3.3	39
17	Stem cell-based gene delivery mediated by cationic niosomes for bone regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 521-531.	3.3	36
18	Hyaluronic acid hydrogel scaffolds loaded with cationic niosomes for efficient non-viral gene delivery. RSC Advances, 2018, 8, 31934-31942.	3.6	29

#	Article	IF	CITATIONS
19	Gene transfer to rat cerebral cortex mediated by polysorbate 80 and poloxamer 188 nonionic surfactant vesicles. Drug Design, Development and Therapy, 2018, Volume 12, 3937-3949.	4.3	12
20	Non-viral vectors based on cationic niosomes as efficient gene delivery vehicles to central nervous system cells into the brain. International Journal of Pharmaceutics, 2018, 552, 48-55.	5.2	30
21	Polysorbate 20 non-ionic surfactant enhances retinal gene delivery efficiency of cationic niosomes after intravitreal and subretinal administration. International Journal of Pharmaceutics, 2018, 550, 388-397.	5.2	28
22	Gene delivery to the lungs: pulmonary gene therapy for cystic fibrosis. Drug Development and Industrial Pharmacy, 2017, 43, 1071-1081.	2.0	23
23	Non-viral vectors based on magnetoplexes, lipoplexes and polyplexes for VEGF gene delivery into central nervous system cells. International Journal of Pharmaceutics, 2017, 521, 130-140.	5.2	19
24	Retinal gene delivery enhancement by lycopene incorporation into cationic niosomes based on DOTMA and polysorbate 60. Journal of Controlled Release, 2017, 254, 55-64.	9.9	54
25	Design and characterization of a magnetite/PEI multifunctional nanohybrid as non-viral vector and cell isolation system. International Journal of Pharmaceutics, 2017, 518, 270-280.	5.2	9
26	Amine containing cationic methacrylate copolymers as efficient gene delivery vehicles to retinal epithelial cells. Journal of Polymer Science Part A, 2017, 55, 280-287.	2.3	4
27	Cationic nioplexes-in-polysaccharide-based hydrogels as versatile biodegradable hybrid materials to deliver nucleic acids. Journal of Materials Chemistry B, 2017, 5, 7756-7767.	5.8	12
28	Nioplexes encapsulated in supramolecular hybrid biohydrogels as versatile delivery platforms for nucleic acids. RSC Advances, 2016, 6, 39688-39699.	3.6	12
29	Elaboration and Physicochemical Characterization of Niosome-Based Nioplexes for Gene Delivery Purposes. Methods in Molecular Biology, 2016, 1445, 63-75.	0.9	15
30	The role of helper lipids in the intracellular disposition and transfection efficiency of niosome formulations for gene delivery to retinal pigment epithelial cells. International Journal of Pharmaceutics, 2016, 503, 115-126.	5.2	34
31	Delivery of an adenovirus vector plasmid by ultrapure oligochitosan based polyplexes. International Journal of Pharmaceutics, 2015, 479, 312-319.	5.2	5
32	Enduring high-efficiency in vivo transfection of neurons with non-viral magnetoparticles in the rat visual cortex for optogenetic applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 835-843.	3.3	28
33	Improving transfection efficiency of ultrapure oligochitosan/DNA polyplexes by medium acidification. Drug Delivery, 2015, 22, 100-110.	5.7	23
34	New Insights into Gene Delivery to Human Neuronal Precursor NT2 Cells: A Comparative Study between Lipoplexes, Nioplexes, and Polyplexes. Molecular Pharmaceutics, 2015, 12, 4056-4066.	4.6	19
35	A Novel Formulation Based on 2,3-Di(tetradecyloxy)propan-1-amine Cationic Lipid Combined with Polysorbate 80 for Efficient Gene Delivery to the Retina. Pharmaceutical Research, 2014, 31, 1665-1675.	3.5	19
36	Cationic vesicles based on non-ionic surfactant and synthetic aminolipids mediate delivery of antisense oligonucleotides into mammalian cells. Colloids and Surfaces B: Biointerfaces, 2014, 119, 30-37.	5.0	18

#	Article	IF	CITATIONS
37	The effect of topical natural ergot alkaloids on the intraocular pressure and aqueous humor dynamics in rabbits with α-chymotrypsin-induced ocular hypertension. Graefe's Archive for Clinical and Experimental Ophthalmology, 2002, 240, 322-328.	1.9	5