
Catherine E Brewer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3130979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bio-crude oil production and valorization of hydrochar as anode material from hydrothermal liquefaction of algae grown on brackish dairy wastewater. Fuel Processing Technology, 2022, 227, 107119.	3.7	11
2	Pecan (Carya illinoinensis) and Dairy Waste Stream Utilization: Properties and Economics of On-Farm Windrow Systems. Sustainability, 2022, 14, 2550.	1.6	2
3	Best practices for bio-crude oil production at pilot scale using continuous flow reactors. , 2022, , 1061-1119.		1
4	Potential of hemp (<i>Cannabis sativa</i> L.) for paired phytoremediation and bioenergy production. GCB Bioenergy, 2021, 13, 525-536.	2.5	49
5	Exploring spent biomass-derived adsorbents as anodes for lithium ion batteries. Materials Today Energy, 2021, 19, 100580.	2.5	10
6	Waste-to-wealth application of wastewater treatment algae-derived hydrochar for Pb(II) adsorption. MethodsX, 2021, 8, 101263.	0.7	9
7	Hydrothermal Liquefaction of Food Waste: Effect of Process Parameters on Product Yields and Chemistry. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	26
8	Ash-pretreatment and hydrothermal liquefaction of filamentous algae grown on dairy wastewater. Algal Research, 2021, 57, 102282.	2.4	13
9	Integrated Extraction and Catalytic Upgrading of Biocrude Oil from Co-hydrothermal Liquefaction of Crude Glycerol and Algae. Energy & Fuels, 2021, 35, 12165-12174.	2.5	6
10	Guayule (Parthenium argentatum) resin: A review of chemistry, extraction techniques, and applications. Industrial Crops and Products, 2021, 165, 113410.	2.5	22
11	Recovery of Nitrogen from Low-Cost Plant Feedstocks Used for Bioenergy: A Review of Availability and Process Order. Energy & Fuels, 2021, 35, 14361-14381.	2.5	1
12	Recovery of struvite from hydrothermally processed algal biomass cultivated in urban wastewaters. Resources, Conservation and Recycling, 2020, 163, 105089.	5.3	31
13	Co-hydrothermal liquefaction of wastewater-grown algae and crude glycerol: A novel strategy of bio-crude oil-aqueous separation and techno-economic analysis for bio-crude oil recovery and upgrading. Algal Research, 2020, 51, 102077.	2.4	20
14	Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: A review. Journal of Analytical and Applied Pyrolysis, 2020, 147, 104780.	2.6	93
15	Characterization of resin extracted from guayule (Parthenium argentatum): A dataset including GC–MS and FT-ICR MS. Data in Brief, 2020, 31, 105989.	0.5	10
16	Characterization and evaluation of guayule processing residues as potential feedstock for biofuel and chemical production. Industrial Crops and Products, 2020, 150, 112311.	2.5	34
17	Roles of Co-solvents in hydrothermal liquefaction of low-lipid, high-protein algae. Bioresource Technology, 2020, 310, 123454.	4.8	38
18	Hydrothermal liquefaction of Galdieria sulphuraria grown on municipal wastewater. Bioresource Technology, 2019, 292, 121884.	4.8	55

CATHERINE E BREWER

#	Article	IF	CITATIONS
19	Short-term leachability of salts from Atriplex-derived biochars. Science of the Total Environment, 2019, 688, 701-707.	3.9	5
20	Bio-crude oil from hydrothermal liquefaction of wastewater microalgae in a pilot-scale continuous flow reactor. Bioresource Technology, 2019, 294, 122184.	4.8	49
21	<i>Co-Products and Biofuels from Guar and Guayule Processing Residues</i> . , 2019, , .		2
22	<i>Roles of Co-solvents in Hydrothermal Liquefaction of Protein-Rich Algae</i> . , 2019, , .		1
23	<i>Adsorption of Hydrogen Sulfide on Biochars from Pallet Wood Waste</i> . , 2019, , .		0
24	<i>Hydrothermal liquefaction value-added products and compost applications for plant and environmental enhancement</i> . , 2019, , .		0
25	<i>Hydrothermal Liquefaction of Food Waste: Bio-crude oil Characterization, Mass and Energy Balance</i> . , 2019, , .		4
26	Modification of a pilot-scale continuous flow reactor for hydrothermal liquefaction of wet biomass. MethodsX, 2019, 6, 2793-2806.	0.7	10
27	Hydrothermal liquefaction of high- and low-lipid algae: Mass and energy balances. Bioresource Technology, 2018, 258, 158-167.	4.8	81
28	<i>Pretreatment and Hydrothermal Liquefaction of Filamentous Algae Grown on Dairy Wastewater</i> . , 2018, , .		0
29	<i>Pyrolysis of Wood Excelsior Residues for Biochar and Renewable Energy Production</i> . , 2018, , .		2
30	Potential of pyrolysis of spacecraft solid waste for water recovery and plant-growth media production. Journal of Analytical and Applied Pyrolysis, 2018, 135, 184-188.	2.6	3
31	<i>Hydrothermal Liquefaction of Algae Grown on Brackish Dairy Wastewater</i> . , 2018, , .		2
32	Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renewable and Sustainable Energy Reviews, 2017, 72, 673-722.	8.2	168
33	Ex-situ catalytic pyrolysis of wastewater sewage sludge – A micro-pyrolysis study. Bioresource Technology, 2017, 232, 229-234.	4.8	59
34	Hydrothermal liquefaction of high- and low-lipid algae: Bio-crude oil chemistry. Applied Energy, 2017, 206, 278-292.	5.1	101
35	Temperature and reaction atmosphere effects on the properties of corn stover biochar. Environmental Progress and Sustainable Energy, 2017, 36, 696-707.	1.3	17
36	<i>Effects of Pyrolysis Conditions on Leaching of Salts from Halophyte Biochars</i> . , 2017, , .		1

CATHERINE E BREWER

#	Article	IF	CITATIONS
37	<i>Hydrothermal Liquefaction of Galdieria sulphuraria Grown on Municipal Wastewater</i> . , 2017, , .		1
38	Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils. Agriculture (Switzerland), 2016, 6, 10.	1.4	28
39	Nutrient Transport in Soils Amended with Biochar: A Transient Model with Two Stationary Phases and Intraparticle Diffusion. Industrial & Engineering Chemistry Research, 2015, 54, 4123-4135.	1.8	12
40	New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 2014, 66, 176-185.	2.9	412
41	Biochar as a Substitute for Vermiculite in Potting Mix for Hybrid Poplar. Bioenergy Research, 2014, 7, 120-131.	2.2	53
42	Extent of Pyrolysis Impacts on Fast Pyrolysis Biochar Properties. Journal of Environmental Quality, 2012, 41, 1115-1122.	1.0	80
43	Biochar. , 2012, , 357-384.		27
44	Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics. Biomass and Bioenergy, 2012, 37, 161-168.	2.9	87
45	Effects of Soil Application of Different Biochars on Selected Soil Chemical Properties. Communications in Soil Science and Plant Analysis, 2011, 42, 2310-2321.	0.6	14
46	Criteria to Select Biochars for Field Studies based on Biochar Chemical Properties. Bioenergy Research, 2011, 4, 312-323.	2.2	231
47	Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress and Sustainable Energy, 2009, 28, 386-396.	1.3	649
48	Simulation of small-scale thermal water desalination using biomass energy. , 0, 108, 65-75.		2