Tran Thanh Tung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3130630/publications.pdf

Version: 2024-02-01

109137 155451 3,232 86 35 citations h-index papers

55 g-index 90 90 90 4855 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites. Advanced Functional Materials, 2017, 27, 1702891.	7.8	209
2	Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis. Sensors, 2017, 17, 1919.	2.1	132
3	Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon, 2016, 110, 97-129.	5.4	128
4	Graphene quantum resistive sensing skin for the detection of alteration biomarkers. Journal of Materials Chemistry, 2012, 22, 21754.	6.7	115
5	Facile Adhesion-Tuning of Superhydrophobic Surfaces between "Lotus―and "Petal―Effect and Their Influence on Icing and Deicing Properties. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8393-8402.	4.0	114
6	Graphene-Based Aerogels Derived from Biomass for Energy Storage and Environmental Remediation. ACS Sustainable Chemistry and Engineering, 2019, 7, 3772-3782.	3. 2	114
7	3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks. Nanoscale, 2020, 12, 16069-16080.	2.8	106
8	Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite into Graphene for Highly Conductive Film and Electromechanical Sensors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16521-16532.	4.0	98
9	Graphene and metal organic frameworks (MOFs) hybridization for tunable chemoresistive sensors for detection of volatile organic compounds (VOCs) biomarkers. Carbon, 2020, 159, 333-344.	5.4	97
10	Unlocking thermogravimetric analysis (TGA) in the fight against "Fake graphene―materials. Carbon, 2021, 179, 505-513.	5 . 4	88
11	Enhancing the sensitivity of graphene/polyurethane nanocomposite flexible piezo-resistive pressure sensors with magnetite nano-spacers. Carbon, 2016, 108, 450-460.	5 . 4	87
12	Poly(ionic liquid)-stabilized graphene sheets and their hybrid with poly(3,4-ethylenedioxythiophene). Organic Electronics, 2011, 12, 2215-2224.	1.4	79
13	Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10160-10168.	4.0	78
14	Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. Nanoscale, 2020, 12, 19007-19042.	2.8	78
15	Grapheneâ€Based Sorbents for Multipollutants Removal in Water: A Review of Recent Progress. Advanced Functional Materials, 2021, 31, 2007356.	7.8	75
16	Self-Assembly and Cross-Linking of Conducting Polymers into 3D Hydrogel Electrodes for Supercapacitor Applications. ACS Applied Energy Materials, 2020, 3, 923-932.	2.5	73
17	Scanning atmospheric plasma for ultrafast reduction of graphene oxide and fabrication of highly conductive graphene films and patterns. Carbon, 2018, 127, 113-121.	5.4	71
18	Electromagnetic properties of Fe ₃ O ₄ â€functionalized graphene and its composites with a conducting polymer. Journal of Polymer Science Part A, 2012, 50, 927-935.	2.5	70

#	Article	IF	CITATIONS
19	3D printing of cell-laden electroconductive bioinks for tissue engineering applications. Journal of Materials Chemistry B, 2020, 8, 5862-5876.	2.9	63
20	Engineering of graphene/epoxy nanocomposites with improved distribution of graphene nanosheets for advanced piezo-resistive mechanical sensing. Journal of Materials Chemistry C, 2016, 4, 3422-3430.	2.7	62
21	Graphene–Fe3O4/PIL–PEDOT for the design of sensitive and stable quantum chemo-resistive VOC sensors. Carbon, 2014, 74, 104-112.	5.4	59
22	Phosphatidylserine recognition and induction of apoptotic cell clearance by Drosophila engulfment receptor Draper. Journal of Biochemistry, 2013, 153, 483-491.	0.9	58
23	Hybridization of MOFs and graphene: A new strategy for the synthesis of porous 3D carbon composites for high performing supercapacitors. Electrochimica Acta, 2020, 329, 135104.	2.6	58
24	Hybrid Films of Graphene and Carbon Nanotubes for High Performance Chemical and Temperature Sensing Applications. Small, 2015, 11, 3485-3493.	5.2	54
25	Water Soluble Fluorescent Carbon Nanodots from Biosource for Cells Imaging. Journal of Nanomaterials, 2017, 2017, 1-10.	1.5	53
26	High stability silver nanoparticles–graphene/poly(ionic liquid)-based chemoresistive sensors for volatile organic compounds' detection. Analytical and Bioanalytical Chemistry, 2014, 406, 3995-4004.	1.9	50
27	Superhydrophobic/superoleophilic natural fibres for continuous oil-water separation and interfacial dye-adsorption. Separation and Purification Technology, 2020, 233, 116062.	3.9	49
28	Preparation of single-walled carbon nanotube (SWNT) gel composites using poly(ionic liquids). Colloid and Polymer Science, 2010, 288, 1013-1018.	1.0	48
29	3D bioprinting of a cell-laden antibacterial polysaccharide hydrogel composite. Carbohydrate Polymers, 2021, 264, 117989.	5.1	48
30	Graphene oxide (GO) decorated on multi-structured porous titania fabricated by plasma electrolytic oxidation (PEO) for enhanced antibacterial performance. Materials and Design, 2021, 200, 109443.	3.3	39
31	Polyamine-modified reduced graphene oxide: A new and cost-effective adsorbent for efficient removal of mercury in waters. Separation and Purification Technology, 2020, 238, 116441.	3.9	38
32	Ionic liquid-assisted microwave reduction of graphite oxide for supercapacitors. RSC Advances, 2012, 2, 8808.	1.7	37
33	Silver Nanowires with Pristine Graphene Oxidation Barriers for Stable and High Performance Transparent Conductive Films. ACS Applied Nano Materials, 2018, 1, 2249-2260.	2.4	37
34	Magnetic iron oxide nanoparticles decorated graphene for chemoresistive gas sensing: The particle size effects. Journal of Colloid and Interface Science, 2019, 539, 315-325.	5.0	37
35	Improved preparation of MoS2/graphene composites and their inks for supercapacitors applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114700.	1.7	37
36	Preparation and characterization of graphene composites with conducting polymers. Polymer International, 2012, 61, 93-98.	1.6	36

#	Article	IF	Citations
37	Hybrid film of chemically modified graphene and vapor-phase-polymerized PEDOT for electronic nose applications. Organic Electronics, 2013, 14, 2789-2794.	1.4	32
38	Engineering of highly conductive and ultra-thin nitrogen-doped graphene films by combined methods of microwave irradiation, ultrasonic spraying and thermal annealing. Chemical Engineering Journal, 2018, 338, 764-773.	6.6	32
39	Mechanism of enhanced photocatalytic activity of Cr-doped ZnO nanoparticles revealed by photoluminescence emission and electron spin resonance. Semiconductor Science and Technology, 2019, 34, 025013.	1.0	29
40	3D sprayed polyurethane functionalized graphene / carbon nanotubes hybrid architectures to enhance the piezo-resistive response of quantum resistive pressure sensors. Carbon, 2020, 168, 564-579.	5.4	28
41	Multiple applications of bio-graphene foam for efficient chromate ion removal and oil-water separation. Chemosphere, 2021, 263, 127790.	4.2	27
42	Upgrading of diesel engine exhaust waste into onion-like carbon nanoparticles for integrated degradation sensing in nano-biocomposites. New Journal of Chemistry, 2021, 45, 3675-3682.	1.4	26
43	Poly(ionic liquid)â€Mediated Hybridization of Singleâ€Walled Carbon Nanotubes and Conducting Polymers. Chemistry - an Asian Journal, 2010, 5, 256-260.	1.7	25
44	Nanocomposites of single-walled carbon nanotubes and poly(3,4-ethylenedioxythiophene) for transparent and conductive film. Organic Electronics, 2011, 12, 22-28.	1.4	25
45	Scalable realization of conductive graphene films for high-efficiency microwave antennas. Journal of Materials Chemistry C, 2016, 4, 10620-10624.	2.7	22
46	Large-scale patterning by the roll-based evaporation-induced self-assembly. Journal of Materials Chemistry, 2012, 22, 22844.	6.7	18
47	Reduced graphene oxide nanofluidic electrolyte with improved electrochemical properties for vanadium flow batteries. Journal of Energy Storage, 2022, 49, 104133.	3.9	17
48	Study of iron oxide nanoparticle phases in graphene aerogels for oxygen reduction reaction. New Journal of Chemistry, 2017, 41, 15180-15186.	1.4	15
49	A Unique 3D Nitrogen-Doped Carbon Composite as High-Performance Oxygen Reduction Catalyst. Materials, 2017, 10, 921.	1.3	14
50	Comprehensive Study of the Sand Spit Evolution at Tidal Inlets in the Central Coast of Vietnam. Journal of Marine Science and Engineering, 2020, 8, 722.	1.2	14
51	Heterojunction of graphene and titanium dioxide nanotube composites for enhancing photocatalytic activity. Journal Physics D: Applied Physics, 2018, 51, 265304.	1.3	13
52	3D Printing Technology of Polymer Composites and Hydrogels for Artificial Skin Tissue Implementations. Lecture Notes in Bioengineering, 2019, , 205-233.	0.3	13
53	Graphene ink for 3D extrusion micro printing of chemo-resistive sensing devices for volatile organic compound detection. Nanoscale, 2021, 13, 5356-5368.	2.8	13
54	Fractal Design for Advancing the Performance of Chemoresistive Sensors. ACS Sensors, 2021, 6, 3685-3695.	4.0	13

#	Article	IF	CITATIONS
55	Extrusionâ€Printed CNT–Graphene Sensor Array with Embedded MXene/PEDOT:PSS Heater for Enhanced NO ₂ Sensing at Low Temperature. Advanced Materials Interfaces, 2021, 8, 2101175.	1.9	13
56	3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors. Journal of Materials Science and Technology, 2022, 117, 174-182.	5.6	13
57	Development of Vapor/Gas Sensors From Biopolymer Composites., 2017,, 385-403.		12
58	Comparative antibacterial activity of 2D materials coated on porous-titania. Journal of Materials Chemistry B, 2021, 9, 6412-6424.	2.9	10
59	Converging 2D Nanomaterials and 3D Bioprinting Technology: Stateâ€ofâ€theâ€Art, Challenges, and Potential Outlook in Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2101439.	3.9	9
60	Conducting Nanocomposites Derived from Poly(styrenesulfonate)-Functionalized MWCNT-PSS and PEDOT. Journal of the Electrochemical Society, 2009, 156, K218.	1.3	8
61	Electrostatic powder coatings of pristine graphene: A new approach for coating of granular and fibril substrates. Applied Surface Science, 2018, 441, 187-193.	3.1	8
62	Green Synthesis of Three-Dimensional Hybrid N-Doped ORR Electro-Catalysts Derived from Apricot Sap. Materials, 2018, 11, 205.	1.3	8
63	Fast response hydrogen gas sensor based on Pd/Cr nanogaps fabricated by a single-step bending deformation. Analytica Chimica Acta, 2020, 1138, 49-58.	2.6	8
64	N-doped reduced graphene oxide-PEDOT nanocomposites for implementation of a flexible wideband antenna for wearable wireless communication applications. Nanotechnology, 2021, 32, 245711.	1.3	8
65	Synthesis and characterization of the carbon nanotube-based composite materials with poly(3,4-ethylenedioxythiophene). Synthetic Metals, 2010, 160, 1266-1272.	2.1	7
66	Self-Assembly of Graphene Derivatives: Methods, Structures, andÂApplications., 2017,, 47-74.		7
67	Highly Water Dispersible Functionalized Graphene by Thermal Thiol-Ene Click Chemistry. Materials, 2021, 14, 2830.	1.3	7
68	High-efficiency microwave graphene antenna. , 2017, , .		6
69	Sediment transport trends and cross-sectional stability of a lagoonal tidal inlet on the Central Coast of Vietnam. International Journal of Sediment Research, 2019, 34, 322-334.	1.8	6
70	Nitrogen-doped carbon-coated nanodiamonds for electrocatalytic applications. Journal Physics D: Applied Physics, 2021, 54, 085303.	1.3	6
71	Interaction of copper(II) halides with 4-azafluorene derivatives in neutral and acid media. Crystal and molecular structure of 4-aza-9-oxofluorenium tetrabromocuprate hydrate (HL4)2CuB4 · H2O. Russian Journal of Inorganic Chemistry, 2007, 52, 733-741.	0.3	5
72	A Facile Synthesis Procedure for Sulfonated Aniline Oligomers with Distinct Microstructures. Materials, 2018, 11, 1755.	1.3	5

#	Article	IF	CITATIONS
73	Cross-overlapped flat-silver/hexagonal boron nitride for translucent heat-reflective coatings. Applied Materials Today, 2020, 20, 100764.	2.3	5
74	Toward on-board microchip synthesis of CdSe <i>vs.</i> PbSe nanocrystalline quantum dots as a spectral decoy for protecting space assets. Reaction Chemistry and Engineering, 2021, 6, 471-485.	1.9	5
75	Electronic noses for VOCs detection based on the nanoparticles hybridized graphene composites. , 2012, , .		4
76	Core-shell nanostructured hybrid composites for volatile organic compound detection. International Journal of Nanomedicine, 2015, 10 Spec Iss, 203.	3.3	4
77	A Unique Synthesis of Macroporous N-Doped Carbon Composite Catalyst for Oxygen Reduction Reaction. Nanomaterials, 2021, 11, 43.	1.9	4
78	Bone Marrow, Peripheral Blood and Plasma for Quantitation of BCR-ABL Transcript in Chronic Myeloid Leukemia. Pharmacophore, 2021, 12, 49-53.	0.2	3
79	Synthesis and molecular structure of substituted 2-hydroxyperhydro-[1,3,2]dioxaborinino-[5,4-c]pyridines, perhydro-[1,3]dioxano-[5,4-c]pyridine, and their precursor-4-hydroxy-3-(l±-hydroxybenzyl)-1-methyl-4-phenylpiperidine. Chemistry of Heterocyclic Compounds, 2008, 44, 1404-1412.	0.6	2
80	Effect of large graphene particle size on structure, optical property and photocatalytic activity of graphene-titanate nanotube composites. Optical Materials, 2021, 122, 111662.	1.7	2
81	Graphene Filled Polymers for Vapor/Gas Sensor Applications. , 2015, , 253-275.		1
82	Nanomaterials-Embedded Liquid Crystal Elastomers in Electronics Devices Application. Springer Series on Polymer and Composite Materials, 2016, , 365-390.	0.5	1
83	Electromigration with enhanced green emission in the titanium dioxide nanotube/graphene composite. Current Applied Physics, 2019, 19, 1082-1087.	1.1	1
84	Electromagnetic properties of Fe ₃ O ₄ â€functionalized graphene and its composites with a conducting polymer. Journal of Polymer Science Part A, 2013, 51, 3767-3767.	2.5	0
85	SAND SPIT EVOLUTION AT THE AN DU RIVER MOUTH, CENTRAL VIETNAM. Journal of Japan Society of Civil Engineers Ser B3 (Ocean Engineering), 2020, 76, I_234-I_239.	0.0	0
86	Process Intensification for Gram-Scale Synthesis of N-Doped Carbon Quantum Dots Immersing a Microplasma Jet in a Gas-Liquid Reactor. SSRN Electronic Journal, 0, , .	0.4	O