
Crispin A Howitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3129732/publications.pdf Version: 2024-02-01

CDISDIN A HOWITT

#	Article	IF	CITATIONS
1	Down-Regulation of FAD2-1 Gene Expression Alters Lysophospholipid Composition in the Endosperm of Rice Grain and Influences Starch Properties. Foods, 2021, 10, 1169.	1.9	6
2	Perennial Ryegrass Contains Gluten-Like Proteins That Could Contaminate Cereal Crops. Frontiers in Nutrition, 2021, 8, 708122.	1.6	3
3	A transcriptional journey from sucrose to endosperm oil bodies in triple transgene oily wheat grain. Journal of Cereal Science, 2021, 100, 103268.	1.8	5
4	Proteome and Nutritional Shifts Observed in Hordein Double-Mutant Barley Lines. Frontiers in Plant Science, 2021, 12, 718504.	1.7	4
5	Rice with Multilayer Aleurone: A Larger Sink for Multiple Micronutrients. Rice, 2021, 14, 102.	1.7	6
6	Proteome Analysis of Hordein-Null Barley Lines Reveals Storage Protein Synthesis and Compensation Mechanisms. Journal of Agricultural and Food Chemistry, 2020, 68, 5763-5775.	2.4	13
7	Developing gluten-free cereals and the role of proteomics in product safety. Journal of Cereal Science, 2020, 93, 102932.	1.8	14
8	Identification and Quantitation of Amylase Trypsin Inhibitors Across Cultivars Representing the Diversity of Bread Wheat. Journal of Proteome Research, 2020, 19, 2136-2148.	1.8	24
9	Catcher of the Rye: Detection of Rye, a Gluten-Containing Grain, by LC–MS/MS. Journal of Proteome Research, 2019, 18, 3394-3403.	1.8	7
10	Proteomics: Tools of the Trade. Advances in Experimental Medicine and Biology, 2019, 1073, 1-22.	0.8	5
11	Assessing the Utility of Multiplexed Liquid Chromatography-Mass Spectrometry for Gluten Detection in Australian Breakfast Food Products. Molecules, 2019, 24, 3665.	1.7	10
12	Hordein Accumulation in Developing Barley Grains. Frontiers in Plant Science, 2019, 10, 649.	1.7	20
13	Targeted proteomics to monitor the extraction efficiency and levels of barley α-amylase trypsin inhibitors that are implicated in non-coeliac gluten sensitivity. Journal of Chromatography A, 2019, 1600, 55-64.	1.8	15
14	Optimisation of protein extraction for in-depth profiling of the cereal grain proteome. Journal of Proteomics, 2019, 197, 23-33.	1.2	44
15	Proteases as Digestive Aids. , 2019, , 314-321.		0
16	Efficient Extraction and Digestion of Gluten Proteins. Methods in Molecular Biology, 2019, 1871, 405-412.	0.4	1
17	Using LC-MS to examine the fermented food products vinegar and soy sauce for the presence of gluten. Food Chemistry, 2018, 254, 302-308.	4.2	20
18	Oat of this world: Defining peptide markers for detection of oats in processed food. Peptide Science, 2018, 110, e24045.	1.0	21

CRISPIN A HOWITT

#	Article	IF	CITATIONS
19	Does Late Maturity Alpha-Amylase Impact Wheat Baking Quality?. Frontiers in Plant Science, 2018, 9, 1356.	1.7	41
20	Gluten Reduction Strategies for Wheat and Barley. Cereal Foods World, 2018, , .	0.7	4
21	Food for thought: Selecting the right enzyme for the digestion of gluten. Food Chemistry, 2017, 234, 389-397.	4.2	30
22	Comparison of Gluten Extraction Protocols Assessed by LC-MS/MS Analysis. Journal of Agricultural and Food Chemistry, 2017, 65, 2857-2866.	2.4	38
23	Liquid Chromatography–Mass Spectrometry Analysis Reveals Hydrolyzed Gluten in Beers Crafted To Remove Gluten. Journal of Agricultural and Food Chemistry, 2017, 65, 9715-9725.	2.4	36
24	Identification of Grain Variety and Quality Type. , 2017, , 453-492.		4
25	Transferring a Biomass Enhancement Biotechnology from Glasshouse to Field: A Case Study on Wheat GWD RNAi. Agronomy, 2017, 7, 82.	1.3	2
26	Engineering high αâ€amylase levels in wheat grain lowers <scp>F</scp> alling <scp>N</scp> umber but improves baking properties. Plant Biotechnology Journal, 2016, 14, 364-376.	4.1	40
27	Identification of barley-specific peptide markers that persist in processed foods and are capable of detecting barley contamination by LC-MS/MS. Journal of Proteomics, 2016, 147, 169-176.	1.2	45
28	Creation of the first ultraâ€low gluten barley (<i>Hordeum vulgare</i> L.) for coeliac and glutenâ€intolerant populations. Plant Biotechnology Journal, 2016, 14, 1139-1150.	4.1	78
29	Comparing Multiple Reaction Monitoring and Sequential Window Acquisition of All Theoretical Mass Spectra for the Relative Quantification of Barley Gluten in Selectively Bred Barley Lines. Analytical Chemistry, 2016, 88, 9127-9135.	3.2	40
30	Corrigendum to "Using mass spectrometry to detect hydrolysed gluten in beer that is responsible for false negatives by ELISA―[J. Chromatogr. A 1370 (2014) 105–114]. Journal of Chromatography A, 2016, 1468, 257.	1.8	0
31	Suppression of glucan, water dikinase in the endosperm alters wheat grain properties, germination and coleoptile growth. Plant Biotechnology Journal, 2016, 14, 398-408.	4.1	29
32	Proteomic Profiling of 16 Cereal Grains and the Application of Targeted Proteomics To Detect Wheat Contamination. Journal of Proteome Research, 2015, 14, 2659-2668.	1.8	85
33	Gluten, Celiac Disease, and Gluten Intolerance and the Impact of Gluten Minimization Treatments with Prolylendopeptidase on the Measurement of Gluten in Beer. Journal of the American Society of Brewing Chemists, 2014, , .	0.8	8
34	Engineering α-amylase levels in wheat grain suggests a highly sophisticated level of carbohydrate regulation during development. Journal of Experimental Botany, 2014, 65, 5443-5457.	2.4	48
35	Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell, Tissue and Organ Culture, 2014, 119, 647-659.	1.2	77
36	Using mass spectrometry to detect hydrolysed gluten in beer that is responsible for false negatives by ELISA. Journal of Chromatography A, 2014, 1370, 105-114.	1.8	71

CRISPIN A HOWITT

#	Article	IF	CITATIONS
37	GrainScan: a low cost, fast method for grain size and colour measurements. Plant Methods, 2014, 10, 23.	1.9	132
38	Fast-tracking development of homozygous transgenic cereal lines using a simple and highly flexible real-time PCR assay. BMC Plant Biology, 2013, 13, 71.	1.6	34
39	Down-regulation of glucan, water-dikinase activity in wheat endosperm increases vegetative biomass and yield. Plant Biotechnology Journal, 2013, 11, 390-391.	4.1	1
40	Proteomics as a tool to understand the complexity of beer. Food Research International, 2013, 54, 1001-1012.	2.9	45
41	Characterization of starch phosphorylases inÂbarley grains. Journal of the Science of Food and Agriculture, 2013, 93, 2137-2145.	1.7	19
42	Measuring Hordein (Gluten) in Beer – A Comparison of ELISA and Mass Spectrometry. PLoS ONE, 2013, 8, e56452.	1.1	92
43	Quantification of Hordeins by ELISA: The Correct Standard Makes a Magnitude of Difference. PLoS ONE, 2013, 8, e56456.	1.1	51
44	What is in a Beer? Proteomic Characterization and Relative Quantification of Hordein (Gluten) in Beer. Journal of Proteome Research, 2012, 11, 386-396.	1.8	123
45	Downâ€regulation of Glucan, Waterâ€Dikinase activity in wheat endosperm increases vegetative biomass and yield. Plant Biotechnology Journal, 2012, 10, 871-882.	4.1	52
46	Gene networks in the synthesis and deposition of protein polymers during grain development of wheat. Functional and Integrative Genomics, 2011, 11, 23-35.	1.4	26
47	Dissecting the T ell response to hordeins in coeliac disease can develop barley with reduced immunotoxicity. Alimentary Pharmacology and Therapeutics, 2010, 32, 1184-1191.	1.9	28
48	Identification of grain variety and quality type. , 2010, , 311-341.		1
49	Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Functional and Integrative Genomics, 2009, 9, 363-376.	1.4	118
50	Expression of bacterial starch-binding domains in Arabidopsis increases starch granule size. Functional Plant Biology, 2006, 33, 257.	1.1	7
51	Carotenoid accumulation and function in seeds and non-green tissues. Plant, Cell and Environment, 2006, 29, 435-445.	2.8	395
52	Characterisation of disproportionating enzyme from wheat endosperm. Planta, 2006, 224, 20-31.	1.6	41
53	A Small-scale Spectrophotometric Method for Determining Starch Gelatinisation. Starch/Staerke, 2005, 57, 505-510.	1.1	2

54 Modifying flour to improve functionality. , 2003, , 220-252.

#	Article	IF	CITATIONS
55	A strain of Synechocystis sp. PCC 6803 without photosynthetic oxygen evolution and respiratory oxygen consumption: implications for the study of cyclic photosynthetic electron transport. Planta, 2001, 214, 46-56.	1.6	36
56	Succinate:Quinol Oxidoreductases in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Presence and Function in Metabolism and Electron Transport. Journal of Bacteriology, 2000, 182, 714-722.	1.0	96
57	Type 2 NADH Dehydrogenases in the Cyanobacterium <i>Synechocystis</i> sp. Strain PCC 6803 Are Involved in Regulation Rather Than Respiration. Journal of Bacteriology, 1999, 181, 3994-4003.	1.0	87
58	Quinol and Cytochrome Oxidases in the CyanobacteriumSynechocystissp. PCC 6803â€. Biochemistry, 1998, 37, 17944-17951.	1.2	117
59	Amplification of DNA from Whole Cells of Cyanobacteria Using PCR. BioTechniques, 1996, 21, 32-34.	0.8	15
60	Cloning, Analysis and Inactivation of thendhKGene Encoding a Subunit of NADH Quinone Oxidoreductase fromAnabaenaPCC 7120. FEBS Journal, 1996, 240, 173-180.	0.2	6
61	Cyanide-insensitive oxygen uptake and pyridine nucleotide dehydrogenases in the cyanobacterium Anabaena PCC 7120. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1141, 313-320.	0.5	21