Olof Ramström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3129727/publications.pdf

Version: 2024-02-01

132 papers

5,712 citations

57758 44 h-index 91884 69 g-index

147 all docs

147 docs citations

147 times ranked

5155 citing authors

#	Article	IF	Citations
1	Drug discovery by dynamic combinatorial libraries. Nature Reviews Drug Discovery, 2002, 1, 26-36.	46.4	459
2	In Situ Generation and Screening of a Dynamic Combinatorial Carbohydrate Library against Concanavalin A. ChemBioChem, 2000, 1, 41-48.	2.6	217
3	Dynamic Deconvolution of a Pre-Equilibrated Dynamic Combinatorial Library of Acetylcholinesterase Inhibitors. ChemBioChem, 2001, 2, 438-444.	2.6	143
4	Quantitative Analysis of Multivalent Ligand Presentation on Gold Glyconanoparticles and the Impact on Lectin Binding. Analytical Chemistry, 2010, 82, 9082-9089.	6.5	128
5	Dynamic Combinatorial Carbohydrate Libraries: Probing the Binding Site of the Concanavalin A Lectin. Chemistry - A European Journal, 2004, 10, 1711-1715.	3.3	126
6	Glycosyldisulfides from dynamic combinatorial libraries as O-glycoside mimetics for plant and endogenous lectins: Their reactivities in solid-phase and cell assays and conformational analysis by molecular dynamics simulations. Bioorganic and Medicinal Chemistry, 2006, 14, 6314-6326.	3.0	121
7	Engineering Nanomaterial Surfaces for Biomedical Applications. Experimental Biology and Medicine, 2009, 234, 1128-1139.	2.4	119
8	Dynamic Combinatorial Resolution: Direct Asymmetric Lipase-Mediated Screening of a Dynamic Nitroaldol Library. Angewandte Chemie - International Edition, 2007, 46, 948-950.	13.8	105
9	A photochemically initiated chemistry for coupling underivatized carbohydrates to gold nanoparticles. Journal of Materials Chemistry, 2009, 19, 8944.	6.7	105
10	Direct STDâ€NMR Identification of βâ€Galactosidase Inhibitors from a Virtual Dynamic Hemithioacetal System. Angewandte Chemie - International Edition, 2010, 49, 589-593.	13.8	102
11	Chemical biology of dynamic combinatorial libraries. Biochimica Et Biophysica Acta - General Subjects, 2002, 1572, 178-186.	2.4	99
12	Glyconanomaterials: Synthesis, Characterization, and Ligand Presentation. Advanced Materials, 2010, 22, 1946-1953.	21.0	94
13	Dynamic covalent polymers for biomedical applications. Materials Chemistry Frontiers, 2020, 4, 489-506.	5.9	94
14	Catalytic Self-Screening of Cholinesterase Substrates from a Dynamic Combinatorial Thioester Library. Angewandte Chemie - International Edition, 2004, 43, 3716-3718.	13.8	93
15	1,3-Dipolar Cycloaddition Reactivities of Perfluorinated Aryl Azides with Enamines and Strained Dipolarophiles. Journal of the American Chemical Society, 2015, 137, 2958-2966.	13.7	91
16	Study of real-time lectinâ€"carbohydrate interactions on the surface of a quartz crystal microbalance. Biosensors and Bioelectronics, 2005, 21, 60-66.	10.1	86
17	Phosphine-catalyzed disulfide metathesis. Chemical Communications, 2008, , 6603.	4.1	85
18	Dynamic Asymmetric Multicomponent Resolution: Lipase-Mediated Amidation of a Double Dynamic Covalent System. Journal of the American Chemical Society, 2009, 131, 14419-14425.	13.7	85

#	Article	IF	CITATIONS
19	Design and synthesis of theranostic antibiotic nanodrugs that display enhanced antibacterial activity and luminescence. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8464-8469.	7.1	76
20	UV-Cross-Linked Poly(vinylpyridine) Thin Films as Reversibly Responsive Surfaces. Chemistry of Materials, 2005, 17, 4092-4096.	6.7	73
21	Perfluoroaryl Azide Staudinger Reaction: A Fast and Bioorthogonal Reaction. Angewandte Chemie - International Edition, 2017, 56, 12117-12121.	13.8	72
22	Stereospecific Ester Activation in Nitrite-Mediated Carbohydrate Epimerization. Journal of Organic Chemistry, 2006, 71, 3306-3309.	3.2	70
23	Direct Measurement of Glyconanoparticles and Lectin Interactions by Isothermal Titration Calorimetry. Analytical Chemistry, 2012, 84, 4248-4252.	6.5	69
24	Dye-doped silica nanoparticles as efficient labels for glycans. Chemical Communications, 2011, 47, 4261.	4.1	66
25	Direct Asymmetric Dynamic Kinetic Resolution by Combined Lipase Catalysis and Nitroaldol (Henry) Reaction. Advanced Synthesis and Catalysis, 2008, 350, 448-452.	4.3	64
26	Photo-Click Immobilization of Carbohydrates on Polymeric Surfaces—A Quick Method to Functionalize Surfaces for Biomolecular Recognition Studies. Bioconjugate Chemistry, 2009, 20, 2364-2370.	3.6	64
27	Synthesis of Multifunctional Cellulose Nanocrystals for Lectin Recognition and Bacterial Imaging. Biomacromolecules, 2015, 16, 1426-1432.	5.4	64
28	Photoderivatized Polymer Thin Films at Quartz Crystal Microbalance Surfaces:  Sensors for Carbohydrateâ^'Protein Interactions. Analytical Chemistry, 2007, 79, 6897-6902.	6.5	63
29	Generation of Bis-Cationic Heterocyclic Inhibitors of Bacillus subtilis HPr Kinase/Phosphatase from a Ditopic Dynamic Combinatorial Library. Journal of Medicinal Chemistry, 2003, 46, 5803-5811.	6.4	61
30	Photogenerated Carbohydrate Microarrays. ChemBioChem, 2007, 8, 166-168.	2.6	58
31	Quartz crystal microbalance bioaffinity sensor for rapid identification of glycosyldisulfide lectin inhibitors from a dynamic combinatorial library. Biosensors and Bioelectronics, 2006, 22, 42-48.	10.1	56
32	Photo-Click Immobilization on Quartz Crystal Microbalance Sensors for Selective Carbohydrateâ [°] Protein Interaction Analyses. Analytical Chemistry, 2011, 83, 1000-1007.	6.5	56
33	Efficient asymmetric synthesis of lamivudine <i>via</i> enzymatic dynamic kinetic resolution. Chemical Communications, 2013, 49, 10376-10378.	4.1	56
34	Base-catalyzed synthesis of aryl amides from aryl azides and aldehydes. Chemical Science, 2016, 7, 713-718.	7.4	54
35	Direct, Mild, and Selective Synthesis of Unprotected Dialdo-Glycosides. European Journal of Organic Chemistry, 2006, 2006, 4323-4326.	2.4	53
36	Efficient Synthesis of \hat{I}^2 -d-Mannosides and \hat{I}^2 -d-Talosides by Double Parallel or Double Serial Inversion. Journal of Organic Chemistry, 2007, 72, 3694-3701.	3.2	52

#	Article	IF	Citations
37	Glyconanomaterials: Emerging applications in biomedical research. Nano Research, 2014, 7, 1381-1403.	10.4	51
38	Dynamic Asymmetric Hemithioacetal Transformation by Lipaseâ€Catalyzed γâ€Lactonization: In Situ Tandem Formation of 1,3â€Oxathiolanâ€5â€one Derivatives. Chemistry - A European Journal, 2012, 18, 6129-6132.	3.3	50
39	Photogenerated lectin sensors produced by thiol-ene/yne photo-click chemistry in aqueous solution. Biosensors and Bioelectronics, 2012, 34, 51-56.	10.1	49
40	Tandem driven dynamic combinatorial resolution via Henry–iminolactone rearrangement. Chemical Communications, 2008, , 768-770.	4.1	47
41	Symmetric dithiodigalactoside: strategic combination of binding studies and detection of selectivity between a plant toxin and human lectins. Organic and Biomolecular Chemistry, 2011, 9, 5445.	2.8	47
42	Double parallel dynamic resolution through lipase-catalyzed asymmetric transformation. Chemical Communications, 2013, 49, 1805.	4.1	47
43	Multivalent glyconanoparticles with enhanced affinity to the anti-viral lectin Cyanovirin-N. Chemical Communications, 2011, 47, 8620.	4.1	46
44	An Iron(III) Catalyst with Unusually Broad Substrate Scope in Regioselective Alkylation of Diols and Polyols. Chemistry - A European Journal, 2016, 22, 2481-2486.	3.3	46
45	Multistimuli-Responsive Enaminitrile Molecular Switches Displaying H ⁺ -Induced Aggregate Emission, Metal Ion-Induced Turn-On Fluorescence, and Organogelation Properties. Journal of the American Chemical Society, 2018, 140, 13640-13643.	13.7	46
46	Reagent-Dependent Regioselective Control in Multiple Carbohydrate Esterifications. Journal of Organic Chemistry, 2007, 72, 1499-1502.	3.2	45
47	Crystallization-Induced Secondary Selection from a Tandem Driven Dynamic Combinatorial Resolution Process. Journal of Organic Chemistry, 2008, 73, 3593-3595.	3.2	45
48	Dynamic light scattering as an efficient tool to study glyconanoparticle–lectin interactions. Analyst, The, 2011, 136, 4174.	3.5	45
49	Glyconanomaterials for biosensing applications. Biosensors and Bioelectronics, 2016, 76, 113-130.	10.1	45
50	Glycan-Functionalized Fluorescent Chitin Nanocrystals for Biorecognition Applications. Bioconjugate Chemistry, 2014, 25, 640-643.	3.6	41
51	Kinetic Self-Sorting of Dynamic Covalent Catalysts with Systemic Feedback Regulation. Journal of the American Chemical Society, 2016, 138, 7836-7839.	13.7	41
52	Diastereoselective One-Pot Tandem Synthesis of 3-Substituted Isoindolinones: A Mechanistic Investigation. Journal of Organic Chemistry, 2010, 75, 5882-5887.	3.2	38
53	Racemase Activity of <i>B. cepacia</i> Lipase Leads to Dualâ€Function Asymmetric Dynamic Kinetic Resolution of αâ€Aminonitriles. Angewandte Chemie - International Edition, 2011, 50, 6592-6595.	13.8	37
54	Stereoselective synthesis of light-activatable perfluorophenylazide-conjugated carbohydrates for glycoarray fabrication and evaluation of structural effects on protein binding by SPR imaging. Organic and Biomolecular Chemistry, 2011, 9, 3188.	2.8	36

#	Article	IF	CITATIONS
55	Asymmetric Synthesis of Substituted Thiolanes through Domino Thiaâ€Michael–Henry Dynamic Covalent Systemic Resolution using Lipase Catalysis. Advanced Synthesis and Catalysis, 2014, 356, 987-992.	4.3	36
56	Synthesis of Positional Thiol Analogs of βâ€ <scp>D</scp> â€Galactopyranose. European Journal of Organic Chemistry, 2007, 2007, 4927-4934.	2.4	35
57	Lectin-gated, mesoporous, photofunctionalized glyconanoparticles for glutathione-responsive drug delivery. Chemical Communications, 2015, 51, 9833-9836.	4.1	34
58	Trehalose-Conjugated, Photofunctionalized Mesoporous Silica Nanoparticles for Efficient Delivery of Isoniazid into Mycobacteria. ACS Biomaterials Science and Engineering, 2015, 1, 1250-1255.	5.2	34
59	Control of the ambident reactivity of the nitrite ion. Organic and Biomolecular Chemistry, 2013, 11, 648-653.	2.8	33
60	Thiazolidinones Derived from Dynamic Systemic Resolution of Complex Reversibleâ€Reaction Networks. Chemistry - A European Journal, 2014, 20, 3288-3291.	3.3	33
61	Asymmetric synthesis of 1,3-oxathiolan-5-one derivatives through dynamic covalent kinetic resolution. Tetrahedron, 2014, 70, 3826-3831.	1.9	33
62	Dynamic Combinatorial Thiolester Libraries for EfficientCatalytic Self-Screening of Hydrolase Substrates. European Journal of Organic Chemistry, 2006, 2006, 285-291.	2.4	32
63	Phosphine-mediated disulfide metathesis in aqueous media. Chemical Communications, 2010, 46, 8469.	4.1	32
64	Sensing lectin–glycan interactions using lectin super-microarrays and glycans labeled with dye-doped silica nanoparticles. Biosensors and Bioelectronics, 2013, 47, 258-264.	10.1	31
65	Silver-catalyzed dynamic systemic resolution of \hat{l}_{\pm} -iminonitriles in a 1,3-dipolar cycloaddition process. Chemical Communications, 2014, 50, 3792-3794.	4.1	31
66	Anilide Formation from Thioacids and Perfluoroaryl Azides. Journal of Organic Chemistry, 2015, 80, 4392-4397.	3.2	29
67	Carbohydrate conjugation through microwave-assisted functionalization of single-walled carbon nanotubes using perfluorophenyl azides. Carbohydrate Research, 2015, 405, 33-38.	2.3	29
68	Simple and Effective Integration of Green Chemistry and Sustainability Education into an Existing Organic Chemistry Course. Journal of Chemical Education, 2018, 95, 1301-1306.	2.3	29
69	Photogenerated carbohydrate microarrays to study carbohydrate–protein interactions using surface plasmon resonance imaging. Biosensors and Bioelectronics, 2010, 26, 344-350.	10.1	28
70	$\langle i > N < i > N < i > N < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < n < $	4.6	28
71	Towards Dynamic Drug Design: Identification and Optimization of $\hat{I}^2 \hat{a} \in G$ alactosidase Inhibitors from a Dynamic Hemithioacetal System. ChemBioChem, 2010, 11, 1600-1606.	2.6	27
72	pH-Dependent Mutarotation of 1-Thioaldoses in Water. Unexpected Behavior of (2S)-d-Aldopyranoses. Journal of Organic Chemistry, 2010, 75, 6115-6121.	3.2	27

#	Article	IF	CITATIONS
73	Supramolecular Control in Carbohydrate Epimerization: Discovery of a New Anion Hostâ 'Guest System. Journal of the American Chemical Society, 2008, 130, 15270-15271.	13.7	26
74	Dynamic Systemic Resolution. Topics in Current Chemistry, 2011, 322, 55-86.	4.0	26
75	In Situ Evaluation of Lipase Performances Through Dynamic Asymmetric Cyanohydrin Resolution. Organic and Biomolecular Chemistry, 2012, 9, 1112-7.	2.8	26
76	Redox-responsive and calcium-dependent switching of glycosyldisulfide interactions with Concanavalin A. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2707-2710.	2.2	25
77	Supramolecular activation in triggered cascade inversion. Chemical Communications, 2008, , 1359.	4.1	24
78	Tandem reversible addition–intramolecular lactonization for the synthesis of 3-functionalized phthalides. Tetrahedron Letters, 2010, 51, 75-78.	1.4	24
79	<i>trans</i> â€Symmetric Dynamic Covalent Systems: Connected Transamination and Transimination Reactions. Chemistry - A European Journal, 2015, 21, 9776-9783.	3.3	24
80	Letter to the Editor: Friction between Surfacesâ€"Polyacrylic Acid Brush and Silicaâ€"Mediated by Calcium Ions. Journal of Dispersion Science and Technology, 2010, 31, 1285-1287.	2.4	23
81	Glyconanomaterials for Combating Bacterial Infections. Chemistry - A European Journal, 2015, 21, 16310-16317.	3.3	23
82	Dynamic Covalent Organocatalysts Discovered from Catalytic Systems through Rapid Deconvolution Screening. Chemistry - A European Journal, 2015, 21, 12735-12740.	3.3	22
83	Chirality Control in Enzyme-Catalyzed Dynamic Kinetic Resolution of 1,3-Oxathiolanes. Journal of Organic Chemistry, 2015, 80, 8478-8481.	3.2	22
84	Surface-Confined Photopolymerization of pH-Responsive Acrylamide/Acrylate Brushes on Polymer Thin Films. Langmuir, 2008, 24, 7559-7564.	3.5	21
85	Quantitative Fluorine NMR To Determine Carbohydrate Density on Glyconanomaterials Synthesized from Perfluorophenyl Azide-Functionalized Silica Nanoparticles by Click Reaction. Analytical Chemistry, 2015, 87, 9451-9458.	6.5	21
86	Tandem driven dynamic self-inhibition of acetylcholinesterase. Chemical Communications, 2010, 46, 8457.	4.1	19
87	Gelation-driven Dynamic Systemic Resolution: in situ Generation and Self-Selection of an Organogelator. Scientific Reports, 2015, 5, 11065.	3.3	19
88	Synthesis and binding affinity analysis of $\hat{l}\pm 1$ -2- and $\hat{l}\pm 1$ -6- O / S -linked dimannosides for the elucidation of sulfur in glycosidic bonds using quartz crystal microbalance sensors. Carbohydrate Research, 2017, 452, 35-42.	2.3	19
89	Lipase-catalyzed asymmetric synthesis of oxathiazinanones through dynamic covalent kinetic resolution. Organic and Biomolecular Chemistry, 2014, 12, 3572-3575.	2.8	18
90	A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange. Angewandte Chemie - International Edition, 2018, 57, 6256-6260.	13.8	18

#	Article	IF	Citations
91	Perfluoroaryl Azide Staudinger Reaction: A Fast and Bioorthogonal Reaction. Angewandte Chemie, 2017, 129, 12285-12289.	2.0	17
92	Hydrogenâ€Bond Catalysis of Imine Exchange in Dynamic Covalent Systems. Chemistry - A European Journal, 2020, 26, 15581-15588.	3.3	17
93	Where's Ester? A Game That Seeks the Structures Hiding Behind the Trivial Names. Journal of Chemical Education, 2010, 87, 406-407.	2.3	16
94	Efficient Asymmetric Synthesis of 1â€Cyanoâ€tetrahydroisoquinolines from Lipase Dual Activity and Opposite Enantioselectivities in αâ€Aminonitrile Resolution. Chemistry - A European Journal, 2014, 20, 11322-11325.	3.3	16
95	Solvent-Dependent, Kinetically Controlled Stereoselective Synthesis of 3- and 4-Thioglycosides. Journal of Organic Chemistry, 2005, 70, 6952-6955.	3.2	15
96	Impact of Hydrogen Bonding on the Fluorescence of <i>N</i> â€Amidinated Fluoroquinolones. Chemistry - an Asian Journal, 2019, 14, 910-916.	3.3	15
97	Synthesis of chiral oxazolidinone derivatives through lipase-catalyzed kinetic resolution. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 29-34.	1.8	14
98	Dynamic Covalent Chemistry of Aldehyde Enamines: Bi ^{III} ―and Sc ^{III} â€Catalysis of Amine–Enamine Exchange. Chemistry - A European Journal, 2017, 23, 11908-11912.	3.3	14
99	A versatile catalyst-free perfluoroaryl azide–aldehyde–amine conjugation reaction. Materials Chemistry Frontiers, 2019, 3, 251-256.	5.9	14
100	Dynamic covalent kinetic resolution. Catalysis Reviews - Science and Engineering, 2020, 62, 66-95.	12.9	14
101	A Carbohydrate–Anion Recognition System in Aprotic Solvents. Chemistry - an Asian Journal, 2014, 9, 1298-1304.	3.3	13
102	Enzyme classification using complex dynamic hemithioacetal systems. Chemical Communications, 2016, 52, 5053-5056.	4.1	12
103	Crystallizationâ€Driven Asymmetric Synthesis of Pyridineâ€Î²â€nitroalcohols via Discoveryâ€Oriented Selfâ€Resolution of a Dynamic System. European Journal of Organic Chemistry, 2010, 2010, 6315-6318.	2.4	11
104	QCM sensing of multivalent interactions between lectins and well-defined glycosylated nanoplatforms. Biosensors and Bioelectronics, 2019, 139, 111328.	10.1	11
105	Carbohydrate Functionalization of Few-Layer Graphene through Microwave-Assisted Reaction of Perfluorophenyl Azide. ACS Applied Bio Materials, 2019, 2, 284-291.	4.6	11
106	Surface-Directed Selection of Dynamic Constitutional Frameworks as an Optimized Microenvironment for Controlled Enzyme Activation. ACS Catalysis, 2020, 10, 1423-1427.	11.2	11
107	Gold Nanoclusters as Nanoantibiotic Auranofin Analogues. Advanced Healthcare Materials, 2022, 11, e2101032.	7.6	11
108	Introducing Dynamic Combinatorial Chemistry: Probing the Substrate Selectivity of Acetylcholinesterase. Journal of Chemical Education, 2010, 87, 1248-1251.	2.3	10

#	Article	IF	CITATIONS
109	Rapid, regioselective deuteration of dimethyl-2,2′-bipyridines via microwave-assistance. RSC Advances, 2015, 5, 2684-2688.	3.6	10
110	Photoactivatable Fluorogens by Intramolecular Câ€"H Insertion of Perfluoroaryl Azide. Journal of Organic Chemistry, 2019, 84, 14520-14528.	3.2	10
111	Perfluorophenyl Azide Immobilization Chemistry for Single Molecule Force Spectroscopy of the Concanavalin A/Mannose Interaction. Langmuir, 2010, 26, 16677-16680.	3. 5	9
112	lonization of covalent immobilized poly(4-vinylphenol) monolayers measured by ellipsometry, QCM and SPR. Applied Surface Science, 2015, 343, 166-171.	6.1	8
113	Lipase-catalyzed kinetic resolution of 3-phenyloxazolidin-2-one derivatives: Cascade O- and N-alkoxycarbonylations. Catalysis Communications, 2016, 82, 11-15.	3.3	8
114	Configurational and Constitutional Dynamics of Enamine Molecular Switches. Chemistry - A European Journal, 2020, 26, 15654-15663.	3. 3	8
115	Stereocontrolled 1- <i>S</i> -glycosylation and comparative binding studies of photoprobe-thiosaccharide conjugates with their <i>O</i> -linked analogs. Pure and Applied Chemistry, 2013, 85, 1789-1801.	1.9	7
116	Catalyst-Free Cycloaddition Reaction for the Synthesis of Glyconanoparticles. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 28136-28142.	8.0	7
117	Signal enhancement in ligand–receptor interactions using dynamic polymers at quartz crystal microbalance sensors. Analyst, The, 2016, 141, 3993-3996.	3.5	7
118	Multienzymatic cascade synthesis of an enantiopure (2R,5R)-1,3-oxathiolane anti-HIV agent precursor. Molecular Catalysis, 2019, 468, 52-56.	2.0	7
119	Resolving a Reactive Organometallic Intermediate from Dynamic Directing Group Systems by Selective Câ°'H Activation. Chemistry - A European Journal, 2018, 24, 101-104.	3.3	6
120	Formation and Outâ€ofâ€Equilibrium, High/Low State Switching of a Nitroaldol Dynamer in Neutral Aqueous Media. Angewandte Chemie - International Edition, 2020, 59, 3434-3438.	13.8	6
121	A Dynamic Multicomponent Approach for Oneâ€Pot Synthesis of 3â€Thioisoindolinones. Israel Journal of Chemistry, 2013, 53, 127-132.	2.3	5
122	Kinetics and Thermodynamics of Constitutional Dynamic Coordination Systems Based on Fell, Coll, Nill, Cull, and Znll. European Journal of Inorganic Chemistry, 2016, 2016, 3950-3956.	2.0	5
123	Acidâ€Assisted Direct Olefin Metathesis of Unprotected Carbohydrates in Water. Chemistry - A European Journal, 2019, 25, 14408-14413.	3.3	5
124	Enzyme- and ruthenium-catalyzed dynamic kinetic resolution involving cascade alkoxycarbonylations for asymmetric synthesis of 5-Substituted N-Aryloxazolidinones. Molecular Catalysis, 2019, 470, 138-144.	2.0	5
125	Stable CAACâ€based Ruthenium Complexes for Dynamic Olefin Metathesis Under Mild Conditions. ChemCatChem, 2021, 13, 4841.	3.7	4
126	Formation and Outâ€ofâ€Equilibrium, High/Low State Switching of a Nitroaldol Dynamer in Neutral Aqueous Media. Angewandte Chemie, 2020, 132, 3462-3466.	2.0	3

#	Article	IF	CITATIONS
127	Design, Synthesis and Selfâ€Assembly of Functional Amphiphilic Metallodendrimers. ChemistryOpen, 2020, 9, 45-52.	1.9	3
128	Activated Selfâ€Resolution and Errorâ€Correction in Catalytic Reaction Networks**. Chemistry - A European Journal, 2021, 27, 10335-10340.	3.3	3
129	A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange. Angewandte Chemie, 2018, 130, 6364-6368.	2.0	2
130	Synthesis of Glyconanomaterials via Photo-Initiated Coupling Chemistry. ACS Symposium Series, 2011, , 49-67.	0.5	1
131	Selective Crossâ€Metathesis of Highly Chelating Substrates in Aqueous Media. ChemistrySelect, 2020, 5, 7254-7257.	1.5	1
132	Carbohydrate-conjugated fluorescent silica nanoprobes for selective detection of galectin-1 and prostate cancer cells. Science Letters Journal, 2015, 4, .	0.0	1