
Chung-Yu Lan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3129580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic specialization associated with phenotypic switching in Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14907-14912.	3.3	271
2	Antimicrobial resistance in <i>Acinetobacter baumannii</i> : From bench to bedside. World Journal of Clinical Cases, 2014, 2, 787.	0.3	251
3	Regulatory networks affected by iron availability in Candida albicans. Molecular Microbiology, 2004, 53, 1451-1469.	1.2	240
4	Candida albicans Hap43 Is a Repressor Induced under Low-Iron Conditions and Is Essential for Iron-Responsive Transcriptional Regulation and Virulence. Eukaryotic Cell, 2011, 10, 207-225.	3.4	147
5	Genome-Wide Transcription Profiling of the Early Phase of Biofilm Formation by Candida albicans. Eukaryotic Cell, 2005, 4, 1562-1573.	3.4	142
6	Human Antimicrobial Peptide LL-37 Inhibits Adhesion of Candida albicans by Interacting with Yeast Cell-Wall Carbohydrates. PLoS ONE, 2011, 6, e17755.	1.1	136
7	Differential Expression of the OmpF and OmpC Porin Proteins in <i>Escherichia coli</i> K-12 Depends upon the Level of Active OmpR. Journal of Bacteriology, 1998, 180, 171-174.	1.0	101
8	Zebrafish as a Model Host for <i>Candida albicans</i> Infection. Infection and Immunity, 2010, 78, 2512-2521.	1.0	96
9	Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence. International Journal of Medical Microbiology, 2006, 296, 405-420.	1.5	82
10	Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility. BMC Microbiology, 2014, 14, 119.	1.3	80
11	Distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance. Journal of Microbiology, Immunology and Infection, 2017, 50, 224-231.	1.5	71
12	Contribution of EmrAB efflux pumps to colistin resistance in Acinetobacter baumannii. Journal of Microbiology, 2017, 55, 130-136.	1.3	68
13	A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans. Fungal Genetics and Biology, 2009, 46, 126-136.	0.9	52
14	Responses of Candida albicans to the human antimicrobial peptide LL-37. Journal of Microbiology, 2014, 52, 581-589.	1.3	51
15	The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii. PLoS ONE, 2015, 10, e0132843.	1.1	50
16	LL37 and hBD-3 elevate the β-1,3-exoglucanase activity of <i>Candida albicans</i> Xog1p, resulting in reduced fungal adhesion to plastic. Biochemical Journal, 2012, 441, 963-970.	1.7	39
17	Characterizing the Role of Cell-Wall β-1,3-Exoglucanase Xog1p in Candida albicans Adhesion by the Human Antimicrobial Peptide LL-37. PLoS ONE, 2011, 6, e21394.	1.1	37
			_

Chung-Yu Lan

#	Article	IF	CITATIONS
19	Interspecies protein-protein interaction network construction for characterization of host-pathogen interactions: a Candida albicans-zebrafish interaction study. BMC Systems Biology, 2013, 7, 79.	3.0	32
20	OmpA Binding Mediates the Effect of Antimicrobial Peptide LL-37 on Acinetobacter baumannii. PLoS ONE, 2015, 10, e0141107.	1.1	31
21	Global screening of potential Candida albicans biofilm-related transcription factors via network comparison. BMC Bioinformatics, 2010, 11, 53.	1.2	29
22	Role of SFP1 in the Regulation of Candida albicans Biofilm Formation. PLoS ONE, 2015, 10, e0129903.	1.1	28
23	Dynamic Transcript Profiling of Candida albicans Infection in Zebrafish: A Pathogen-Host Interaction Study. PLoS ONE, 2013, 8, e72483.	1.1	25
24	Rhb1 Regulates the Expression of Secreted Aspartic Protease 2 through the TOR Signaling Pathway in Candida albicans. Eukaryotic Cell, 2012, 11, 168-182.	3.4	21
25	Antimicrobial Activity of the Peptide LfcinB15 against Candida albicans. Journal of Fungi (Basel,) Tj ETQq1 3	0.784314 rgBT 1.5	Qverlock
26	Candida albicans Sfp1 Is Involved in the Cell Wall and Endoplasmic Reticulum Stress Responses Induced by Human Antimicrobial Peptide LL-37. International Journal of Molecular Sciences, 2021, 22, 10633.	1.8	18
27	Characterization of biofilm production in different strains of <i>Acinetobacter baumannii</i> and the effects of chemical compounds on biofilm formation. PeerJ, 2020, 8, e9020.	0.9	16
28	Diverse Hap43-Independent Functions of the Candida albicans CCAAT-Binding Complex. Eukaryotic Cell, 2013, 12, 804-815.	3.4	15
29	Rhamnose Binding Protein as an Anti-Bacterial Agent—Targeting Biofilm of Pseudomonas aeruginosa. Marine Drugs, 2019, 17, 355.	2.2	15
30	Novel mitochondrial complex I-inhibiting peptides restrain NADH dehydrogenase activity. Scientific Reports, 2019, 9, 13694.	1.6	14
31	Human Antimicrobial Peptide Hepcidin 25-Induced Apoptosis in Candida albicans. Microorganisms, 2020, 8, 585.	1.6	14
32	Molecular Epidemiology and Antimicrobial Resistance Determinants of Multidrug-Resistant <i>Acinetobacter baumannii</i> in Five Proximal Hospitals in Taiwan. Japanese Journal of Infectious Diseases, 2011, 64, 222-227.	0.5	14
33	The role of Mss11 in Candida albicans biofilm formation. Molecular Genetics and Genomics, 2014, 289, 807-819.	1.0	13
34	The Transcription Factor Sfp1 Regulates the Oxidative Stress Response in Candida albicans. Microorganisms, 2019, 7, 131.	1.6	13
35	Candida albicans Aro1 affects cell wall integrity, biofilm formation and virulence. Journal of Microbiology, Immunology and Infection, 2020, 53, 115-124.	1.5	13
36	A method to assess influence of different medical tubing on biofilm formation by Acinetobacter baumannii. Journal of Microbiological Methods, 2019, 160, 84-86.	0.7	12

Chung-Yu Lan

#	Article	IF	CITATIONS
37	Robustness analysis on interspecies interaction network for iron and glucose competition between Candida albicans and zebrafish during infection. BMC Systems Biology, 2014, 8, S6.	3.0	10
38	Helical structure motifs made searchable for functional peptide design. Nature Communications, 2022, 13, 102.	5.8	10
39	Prediction of Phenotype-Associated Genes via a Cellular Network Approach: A Candida albicans Infection Case Study. PLoS ONE, 2012, 7, e35339.	1.1	9
40	The Antimicrobial Peptides P-113Du and P-113Tri Function against Candida albicans. Antimicrobial Agents and Chemotherapy, 2016, 60, 6369-6373.	1.4	9
41	Development and evaluation of a sensitive enzyme-linked oligonucleotide-sorbent assay for detection of polymerase chain reaction-amplified hepatitis C virus of genotypes 1–6. Journal of Virological Methods, 2008, 151, 211-216.	1.0	8
42	The interaction between Carbohydrates and the Antimicrobial Peptide P-113Tri is Involved in the Killing of Candida albicans. Microorganisms, 2020, 8, 299.	1.6	8
43	Essential Functional Modules for Pathogenic and Defensive Mechanisms inCandida albicansInfections. BioMed Research International, 2014, 2014, 1-15.	0.9	7
44	Candida albicans Hom6 is a homoserine dehydrogenase involved in protein synthesis and cell adhesion. Journal of Microbiology, Immunology and Infection, 2017, 50, 863-871.	1.5	7
45	Investigating Common Pathogenic Mechanisms between Homo sapiens and Different Strains of Candida albicans for Drug Design: Systems Biology Approach via Two-Sided NGS Data Identification. Toxins, 2019, 11, 119.	1.5	3
46	The small GTPase Rhb1 is involved in the cell response to fluconazole inCandida albicans. FEMS Yeast Research, 2019, 19, .	1.1	3
47	Minimal Inhibitory Concentration (MIC) Assay for Acinetobacter baumannii. Bio-protocol, 2014, 4, .	0.2	2
48	Induction of Tigecycline Resistance in Acinetobacter baumannii. Bio-protocol, 2014, 4, .	0.2	1