
Tony Pham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/312938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selfâ€Adjusting Metal–Organic Framework for Efficient Capture of Trace Xenon and Krypton. Angewandte Chemie, 2022, 134, .	2.0	5
2	Selfâ€Adjusting Metal–Organic Framework for Efficient Capture of Trace Xenon and Krypton. Angewandte Chemie - International Edition, 2022, 61, .	13.8	47
3	Investigating H ₂ Adsorption in Isostructural Metal–Organic Frameworks M-CUK-1 (M = Co) Tj ET 14, 8126-8136.	Qq1 1 0.7 8.0	84314 rgBT 5
4	Metal–Organic Framework Based Hydrogen-Bonding Nanotrap for Efficient Acetylene Storage and Separation. Journal of the American Chemical Society, 2022, 144, 1681-1689.	13.7	172
5	Methane storage in flexible and dynamical metal–organic frameworks. Chemical Physics Reviews, 2022, 3, .	5.7	7
6	Pore-Nanospace Engineering of Mixed-Ligand Metal–Organic Frameworks for High Adsorption of Hydrofluorocarbons and Hydrochlorofluorocarbons. Chemistry of Materials, 2022, 34, 5116-5124.	6.7	11
7	A robust soc-MOF platform exhibiting high gravimetric uptake and volumetric deliverable capacity for on-board methane storage. Nano Research, 2021, 14, 512-517.	10.4	40
8	A robust heterometallic ultramicroporous MOF with ultrahigh selectivity for propyne/propylene separation. Journal of Materials Chemistry A, 2021, 9, 2850-2856.	10.3	22
9	A MOFâ€based Ultraâ€Strong Acetylene Nanoâ€trap for Highly Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie, 2021, 133, 5343-5348.	2.0	49
10	Frontispiz: A MOFâ€based Ultraâ€Strong Acetylene Nanoâ€ŧrap for Highly Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie, 2021, 133, .	2.0	1
11	Frontispiece: A MOFâ€based Ultraâ€Strong Acetylene Nanoâ€trap for Highly Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
12	A MOFâ€based Ultraâ€Strong Acetylene Nanoâ€trap for Highly Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie - International Edition, 2021, 60, 5283-5288.	13.8	172
13	Nanospace Engineering of Metal–Organic Frameworks through Dynamic Spacer Installation of Multifunctionalities for Efficient Separation of Ethane from Ethane/Ethylene Mixtures. Angewandte Chemie, 2021, 133, 9766-9771.	2.0	9
14	Nanospace Engineering of Metal–Organic Frameworks through Dynamic Spacer Installation of Multifunctionalities for Efficient Separation of Ethane from Ethane/Ethylene Mixtures. Angewandte Chemie - International Edition, 2021, 60, 9680-9685.	13.8	89
15	Aminoâ€Functionalised Hybrid Ultramicroporous Materials that Enable Singleâ€Step Ethylene Purification from a Ternary Mixture. Angewandte Chemie, 2021, 133, 10997-11004.	2.0	10
16	Aminoâ€Functionalised Hybrid Ultramicroporous Materials that Enable Singleâ€Step Ethylene Purification from a Ternary Mixture. Angewandte Chemie - International Edition, 2021, 60, 10902-10909.	13.8	56
17	Molecular Sieving of Acetylene from Ethylene in a Rigid Ultraâ€microporous Metal Organic Framework Chemistry - A European Journal, 2021, 27, 9446-9453.	3.3	20
18	Scalable Room-Temperature Synthesis of Highly Robust Ethane-Selective Metal–Organic Frameworks for Efficient Ethylene Purification. Journal of the American Chemical Society, 2021, 143, 8654-8660.	13.7	124

#	Article	IF	CITATIONS
19	Indium–Organic Framework with <i>soc</i> Topology as a Versatile Catalyst for Highly Efficient One-Pot Strecker Synthesis of α-aminonitriles. ACS Applied Materials & Interfaces, 2021, 13, 52023-52033.	8.0	28
20	Toward an Understanding of the Propensity for Crystalline Hydrate Formation by Molecular Compounds. Part 2. Crystal Growth and Design, 2021, 21, 4927-4939.	3.0	13
21	Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angewandte Chemie, 2021, 133, 20546-20553.	2.0	14
22	Breaking the trade-off between selectivity and adsorption capacity for gas separation. CheM, 2021, 7, 3085-3098.	11.7	68
23	Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angewandte Chemie - International Edition, 2021, 60, 20383-20390.	13.8	56
24	Efficient propyne/propadiene separation by microporous crystalline physiadsorbents. Nature Communications, 2021, 12, 5768.	12.8	26
25	Pore Engineering for One-Step Ethylene Purification from a Three-Component Hydrocarbon Mixture. Journal of the American Chemical Society, 2021, 143, 1485-1492.	13.7	143
26	One-step ethylene production from a four-component gas mixture by a single physisorbent. Nature Communications, 2021, 12, 6507.	12.8	64
27	Tuning the Selectivity between C2H2 and CO2 in Molecular Porous Materials. Langmuir, 2021, 37, 13838-13845.	3.5	9
28	Simulations of H ₂ Sorption in an Anthracene-Functionalized rht -Metal–Organic Framework. Journal of Physical Chemistry C, 2020, 124, 13753-13764.	3.1	1
29	Radiation-resistant metal-organic framework enables efficient separation of krypton fission gas from spent nuclear fuel. Nature Communications, 2020, 11, 3103.	12.8	54
30	Insights into the Gas Adsorption Mechanisms in Metal–Organic Frameworks from Classical Molecular Simulations. Topics in Current Chemistry, 2020, 378, 14.	5.8	16
31	Insights into the Gas Adsorption Mechanisms in Metal–Organic Frameworks from Classical Molecular Simulations. Topics in Current Chemistry Collections, 2020, , 215-279.	0.5	2
32	MPMC and MCMD: Free Highâ€Performance Simulation Software for Atomistic Systems. Advanced Theory and Simulations, 2019, 2, 1900113.	2.8	8
33	Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science, 2019, 366, 241-246.	12.6	360
34	A Metal–Organic Framework Based Methane Nanoâ€ŧrap for the Capture of Coalâ€Mine Methane. Angewandte Chemie, 2019, 131, 10244-10247.	2.0	28
35	Molecular Sieving and Direct Visualization of CO ₂ in Binding Pockets of an Ultramicroporous Lanthanide Metal–Organic Framework Platform. ACS Applied Materials & Interfaces, 2019, 11, 23192-23197.	8.0	26
36	Investigating CO ₂ Sorption in SIFSIX-3-M (M = Fe, Co, Ni, Cu, Zn) through Computational Studies. Crystal Growth and Design, 2019, 19, 3732-3743.	3.0	35

#	Article	IF	CITATIONS
37	A Metal–Organic Framework Based Methane Nanoâ€trap for the Capture of Coalâ€Mine Methane. Angewandte Chemie - International Edition, 2019, 58, 10138-10141.	13.8	181
38	Robust Microporous Metal–Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie, 2019, 131, 10315-10320.	2.0	16
39	Robust Microporous Metal–Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie - International Edition, 2019, 58, 10209-10214.	13.8	69
40	Highly selective CO ₂ removal for one-step liquefied natural gas processing by physisorbents. Chemical Communications, 2019, 55, 3219-3222.	4.1	31
41	Innenrücktitelbild: A Metal–Organic Framework Based Methane Nanoâ€trap for the Capture of Coalâ€Mine Methane (Angew. Chem. 30/2019). Angewandte Chemie, 2019, 131, 10483-10483.	2.0	0
42	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie - International Edition, 2018, 57, 5684-5689.	13.8	161
43	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie, 2018, 130, 5786-5791.	2.0	27
44	Efficient CO ₂ Removal for Ultra â€ Pure CO Production by Two Hybrid Ultramicroporous Materials. Angewandte Chemie - International Edition, 2018, 57, 3332-3336.	13.8	52
45	Efficient CO ₂ Removal for Ultra â€ Pure CO Production by Two Hybrid Ultramicroporous Materials. Angewandte Chemie, 2018, 130, 3390-3394.	2.0	12
46	Simulations of hydrogen, carbon dioxide, and small hydrocarbon sorption in a nitrogen-rich <i>rht</i> -metal–organic framework. Physical Chemistry Chemical Physics, 2018, 20, 1761-1777.	2.8	15
47	Readily accessible shape-memory effect in a porous interpenetrated coordination network. Science Advances, 2018, 4, eaaq1636.	10.3	61
48	lmpact of partial interpenetration in a hybrid ultramicroporous material on C ₂ H ₂ /C ₂ H ₄ separation performance. Chemical Communications, 2018, 54, 3488-3491.	4.1	38
49	Investigating the Effects of Linker Extension on H ₂ Sorption in the rht-Metal–Organic Framework NU-111 by Molecular Simulations. Crystal Growth and Design, 2018, 18, 7599-7610.	3.0	9
50	Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene. Angewandte Chemie, 2018, 130, 11137-11141.	2.0	85
51	Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene. Angewandte Chemie - International Edition, 2018, 57, 10971-10975.	13.8	365
52	Investigating C ₂ H ₂ Sorption in α-[M ₃ (O ₂ CH) ₆] (M = Mg, Mn) Through Theoretical Studies. Crystal Growth and Design, 2018, 18, 5342-5352.	3.0	2
53	Hydrogen Adsorption in a Zeolitic Imidazolate Framework with Ita Topology. Journal of Physical Chemistry C, 2018, 122, 15435-15445.	3.1	17
54	Theoretical study of the effect of halogen substitution in molecular porous materials for CO ₂ and C ₂ H ₂ sorption. AIMS Materials Science, 2018, 5, 226-245.	1.4	1

#	Article	IF	CITATIONS
55	Highly Selective Separation of C ₂ H ₂ from CO ₂ by a New Dichromate-Based Hybrid Ultramicroporous Material. ACS Applied Materials & Interfaces, 2017, 9, 33395-33400.	8.0	116
56	Partially Interpenetrated NbO Topology Metal–Organic Framework Exhibiting Selective Gas Adsorption. Crystal Growth and Design, 2017, 17, 2711-2717.	3.0	30
57	The rotational dynamics of H ₂ adsorbed in covalent organic frameworks. Physical Chemistry Chemical Physics, 2017, 19, 13075-13082.	2.8	17
58	Predictive models of gas sorption in a metal–organic framework with open-metal sites and small pore sizes. Physical Chemistry Chemical Physics, 2017, 19, 18587-18602.	2.8	24
59	Comparing the mechanism and energetics of CO ₂ sorption in the SIFSIX series. CrystEngComm, 2017, 19, 3338-3347.	2.6	22
60	High H ₂ Sorption Energetics in Zeolitic Imidazolate Frameworks. Journal of Physical Chemistry C, 2017, 121, 1723-1733.	3.1	13
61	Effect of ring rotation upon gas adsorption in SIFSIX-3-M (M = Fe, Ni) pillared square grid networks. Chemical Science, 2017, 8, 2373-2380.	7.4	121
62	The effect of centred versus offset interpenetration on C ₂ H ₂ sorption in hybrid ultramicroporous materials. Chemical Communications, 2017, 53, 11592-11595.	4.1	40
63	Investigating gas sorption in an rht -metal–organic framework with 1,2,3-triazole groups. Physical Chemistry Chemical Physics, 2017, 19, 29204-29221.	2.8	8
64	Experimental and theoretical investigations of the gas adsorption sites in rht-metal–organic frameworks. CrystEngComm, 2017, 19, 4646-4665.	2.6	20
65	Fine Tuning of MOFâ€505 Analogues To Reduce Lowâ€Pressure Methane Uptake and Enhance Methane Working Capacity. Angewandte Chemie, 2017, 129, 11584-11588.	2.0	33
66	Fine Tuning of MOFâ€505 Analogues To Reduce Lowâ€Pressure Methane Uptake and Enhance Methane Working Capacity. Angewandte Chemie - International Edition, 2017, 56, 11426-11430.	13.8	119
67	An unusual H2 sorption mechanism in PCN-14: insights from molecular simulation. Physical Chemistry Chemical Physics, 2016, 18, 21421-21430.	2.8	11
68	Hybrid Ultraâ€Microporous Materials for Selective Xenon Adsorption and Separation. Angewandte Chemie, 2016, 128, 8425-8429.	2.0	38
69	Hybrid Ultraâ€Microporous Materials for Selective Xenon Adsorption and Separation. Angewandte Chemie - International Edition, 2016, 55, 8285-8289.	13.8	137
70	Benchmark C2H2/CO2 and CO2/C2H2 Separation by Two Closely Related Hybrid Ultramicroporous Materials. CheM, 2016, 1, 753-765.	11.7	349
71	Towards an understanding of the propensity for crystalline hydrate formation by molecular compounds. IUCrJ, 2016, 3, 430-439.	2.2	49
72	Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers. Chemical Science, 2016, 7, 5470-5476.	7.4	66

#	Article	IF	CITATIONS
73	Dynamics of H2 adsorbed in porous materials as revealed by computational analysis of inelastic neutron scattering spectra. Physical Chemistry Chemical Physics, 2016, 18, 17141-17158.	2.8	23
74	Accurate H ₂ Sorption Modeling in the <i>rht</i> -MOF NOTT-112 Using Explicit Polarization. Crystal Growth and Design, 2016, 16, 6024-6032.	3.0	17
75	Tuning Pore Size in Square‣attice Coordination Networks for Sizeâ€ S elective Sieving of CO ₂ . Angewandte Chemie, 2016, 128, 10424-10428.	2.0	43
76	Tuning Pore Size in Square‣attice Coordination Networks for Size‧elective Sieving of CO ₂ . Angewandte Chemie - International Edition, 2016, 55, 10268-10272.	13.8	237
77	Theoretical Investigations of CO ₂ and H ₂ Sorption in Robust Molecular Porous Materials. Langmuir, 2016, 32, 11492-11505.	3.5	17
78	A Robust Metal-Metalloporphyrin Framework Based upon a Secondary Building Unit of Infinite Nickel Oxide Chain. Crystal Growth and Design, 2016, 16, 1005-1009.	3.0	14
79	Dramatic Effect of the Electrostatic Parameters on H2 Sorption in an M-MOF-74 Analogue. Crystal Growth and Design, 2016, 16, 867-874.	3.0	23
80	Crystal Engineering of a 4,6-c fsc Platform That Can Serve as a Carbon Dioxide Single-Molecule Trap. Crystal Growth and Design, 2016, 16, 1071-1080.	3.0	21
81	Exceptional H ₂ sorption characteristics in a Mg ²⁺ -based metal–organic framework with small pores: insights from experimental and theoretical studies. Physical Chemistry Chemical Physics, 2016, 18, 1786-1796.	2.8	24
82	Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in <i>rht</i> â€Metal–Organic Frameworks. ChemPhysChem, 2015, 16, 3170-3179.	2.1	14
83	Understanding Hydrogen Sorption in In- <i>soc</i> -MOF: A Charged Metal-Organic Framework with Open-Metal Sites, Narrow Channels, and Counterions. Crystal Growth and Design, 2015, 15, 1460-1471.	3.0	32
84	Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 2144-2151.	6.7	72
85	Investigating H2Sorption in a Fluorinated Metal–Organic Framework with Small Pores Through Molecular Simulation and Inelastic Neutron Scattering. Langmuir, 2015, 31, 7328-7336.	3.5	26
86	The local electric field favours more than exposed nitrogen atoms on CO ₂ capture: a case study on the rht -type MOF platform. Chemical Communications, 2015, 51, 9636-9639.	4.1	48
87	Inelastic Neutron Scattering and Theoretical Studies of H2Sorption in a Dy(III)-Based Phosphine Coordination Material. Chemistry of Materials, 2015, 27, 7619-7626.	6.7	10
88	Novel mode of 2-fold interpenetration observed in a primitive cubic network of formula [Ni(1,2-bis(4-pyridyl)acetylene) ₂ (Cr ₂ O ₇)] _n . Chemical Communications, 2015, 51, 14832-14835.	4.1	47
89	Hydrophobic pillared square grids for selective removal of CO ₂ from simulated flue gas. Chemical Communications, 2015, 51, 15530-15533.	4.1	115
90	Understanding the H ₂ Sorption Trends in the M-MOF-74 Series (M = Mg, Ni, Co, Zn). Journal of Physical Chemistry C, 2015, 119, 1078-1090.	3.1	84

#	Article	IF	CITATIONS
91	Investigating the Gas Sorption Mechanism in an <i>rht</i> -Metal–Organic Framework through Computational Studies. Journal of Physical Chemistry C, 2014, 118, 439-456.	3.1	40
92	Modeling PCN-61 and PCN-66: Isostructural <i>rht</i> -Metal–Organic Frameworks with Distinct CO ₂ Sorption Mechanisms. Crystal Growth and Design, 2014, 14, 5599-5607.	3.0	23
93	A high rotational barrier for physisorbed hydrogen in an fcu-metal–organic framework. Chemical Communications, 2014, 50, 14109-14112.	4.1	28
94	Simulations of hydrogen sorption in rht-MOF-1: identifying the binding sites through explicit polarization and quantum rotation calculations. Journal of Materials Chemistry A, 2014, 2, 2088-2100.	10.3	55
95	Dramatic effect of pore size reduction on the dynamics of hydrogen adsorbed in metal–organic materials. Journal of Materials Chemistry A, 2014, 2, 13884.	10.3	27
96	Theoretical Investigations of CO ₂ and CH ₄ Sorption in an Interpenetrated Diamondoid Metal–Organic Material. Langmuir, 2014, 30, 6454-6462.	3.5	35
97	Capturing the H ₂ –Metal Interaction in Mg-MOF-74 Using Classical Polarization. Journal of Physical Chemistry C, 2014, 118, 22683-22690.	3.1	40
98	Insights into an intriguing gas sorption mechanism in a polar metal–organic framework with open-metal sites and narrow channels. Chemical Communications, 2014, 50, 7283-7286.	4.1	16
99	Introduction of ï€-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane. Journal of the American Chemical Society, 2014, 136, 8654-8660.	13.7	383
100	Putting the Squeeze on CH ₄ and CO ₂ through Control over Interpenetration in Diamondoid Nets. Journal of the American Chemical Society, 2014, 136, 5072-5077.	13.7	106
101	A Robust Molecular Porous Material with High CO ₂ Uptake and Selectivity. Journal of the American Chemical Society, 2013, 135, 10950-10953.	13.7	236
102	Pillar substitution modulates CO2 affinity in "mmo―topology networks. Chemical Communications, 2013, 49, 9809.	4.1	47
103	Enhancement of CO2 selectivity in a pillared pcu MOM platform through pillar substitution. Chemical Communications, 2013, 49, 1606.	4.1	87
104	Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature, 2013, 495, 80-84.	27.8	2,005
105	Understanding Hydrogen Sorption in a Metal–Organic Framework with Open-Metal Sites and Amide Functional Groups. Journal of Physical Chemistry C, 2013, 117, 9340-9354.	3.1	74
106	Theoretical Investigations of CO ₂ and H ₂ Sorption in an Interpenetrated Square-Pillared Metal–Organic Material. Journal of Physical Chemistry C, 2013, 117, 9970-9982.	3.1	36
107	Computational Studies of CO ₂ Sorption and Separation in an Ultramicroporous Metal–Organic Material. Journal of Physical Chemistry C, 2013, 117, 17687-17698.	3.1	45
108	Examining the Effects of Different Ring Configurations and Equatorial Fluorine Atom Positions on CO ₂ Sorption in [Cu(bpy) ₂ SiF ₆]. Crystal Growth and Design, 2013, 13, 4542-4548.	3.0	17

#	ARTICLE	IF	CITATIONS
109	A Polarizable and Transferable PHAST CO ₂ Potential for Materials Simulation. Journal of Chemical Theory and Computation, 2013, 9, 5421-5429.	5.3	39
110	Efficient calculation of many-body induced electrostatics in molecular systems. Journal of Chemical Physics, 2013, 139, 184112.	3.0	32
111	Simulation of the Mechanism of Gas Sorption in a Metal–Organic Framework with Open Metal Sites: Molecular Hydrogen in PCN-61. Journal of Physical Chemistry C, 2012, 116, 15538-15549.	3.1	76
112	Highly Selective CO ₂ Uptake in Uninodal 6-Connected "mmo―Nets Based upon MO ₄ ^{2–} (M = Cr, Mo) Pillars. Journal of the American Chemical Society, 2012, 134, 19556-19559.	13.7	110