Zhongmin Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3129332/publications.pdf

Version: 2024-02-01

52 papers 6,185 citations

32 h-index 52 g-index

54 all docs

54 docs citations

times ranked

54

5082 citing authors

#	Article	IF	CITATIONS
1	Chemodynamic Therapy: Tumour Microenvironmentâ€Mediated Fenton and Fentonâ€like Reactions. Angewandte Chemie - International Edition, 2019, 58, 946-956.	7.2	1,405
2	Antiferromagnetic Pyrite as the Tumor Microenvironmentâ€Mediated Nanoplatform for Selfâ€Enhanced Tumor Imaging and Therapy. Advanced Materials, 2017, 29, 1701683.	11.1	458
3	Biomedicine Meets Fenton Chemistry. Chemical Reviews, 2021, 121, 1981-2019.	23.0	400
4	Calcium-Overload-Mediated Tumor Therapy by Calcium Peroxide Nanoparticles. CheM, 2019, 5, 2171-2182.	5.8	288
5	In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28667-28677.	3.3	244
6	Modulating Hypoxia via Nanomaterials Chemistry for Efficient Treatment of Solid Tumors. Accounts of Chemical Research, 2018, 51, 2502-2511.	7.6	230
7	A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860.	23.3	228
8	Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nature Communications, 2021, 12, 1124.	5.8	227
9	Germanene-Based Theranostic Materials for Surgical Adjuvant Treatment: Inhibiting Tumor Recurrence and Wound Infection. Matter, 2020, 3, 127-144.	5.0	190
10	Phosphorus Science-Oriented Design and Synthesis of Multifunctional Nanomaterials for Biomedical Applications. Matter, 2020, 2, 297-322.	5.0	165
11	Ultrasound mediated therapy: Recent progress and challenges in nanoscience. Nano Today, 2020, 35, 100949.	6.2	153
12	Ferrous-cysteine–phosphotungstate nanoagent with neutral pH fenton reaction activity for enhanced cancer chemodynamic therapy. Materials Horizons, 2019, 6, 369-374.	6.4	150
13	Insights from nanotechnology in COVID-19 treatment. Nano Today, 2021, 36, 101019.	6.2	146
14	Chemodynamic Therapy: Tumour Microenvironmentâ€Mediated Fenton and Fentonâ€ike Reactions. Angewandte Chemie, 2019, 131, 958-968.	1.6	123
15	Biodegradable Nanoprodrugs: "Delivering―ROS to Cancer Cells for Molecular Dynamic Therapy. Advanced Materials, 2020, 32, e1904011.	11.1	115
16	Staneneâ€Based Nanosheets for βâ€Elemene Delivery and Ultrasoundâ€Mediated Combination Cancer Therapy. Angewandte Chemie - International Edition, 2021, 60, 7155-7164.	7.2	113
17	Pyroelectric nanoplatform for NIR-II-triggered photothermal therapy with simultaneous pyroelectric dynamic therapy. Materials Horizons, 2018, 5, 946-952.	6.4	108
18	Pnictogens in medicinal chemistry: evolution from erstwhile drugs to emerging layered photonic nanomedicine. Chemical Society Reviews, 2021, 50, 2260-2279.	18.7	106

#	Article	IF	CITATIONS
19	Scintillator-Based Nanohybrids with Sacrificial Electron Prodrug for Enhanced X-ray-Induced Photodynamic Therapy. Nano Letters, 2018, 18, 5768-5774.	4.5	104
20	Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine, 2020, 56, 102821.	2.7	103
21	Oxygen Vacancy Enables Markedly Enhanced Magnetic Resonance Imaging-Guided Photothermal Therapy of a Gd ³⁺ -Doped Contrast Agent. ACS Nano, 2017, 11, 4256-4264.	7.3	94
22	Arsenene Nanodots with Selective Killing Effects and their Lowâ€Dose Combination with ßâ€Elemene for Cancer Therapy. Advanced Materials, 2021, 33, e2102054.	11.1	93
23	Oral Insulin Delivery Platforms: Strategies To Address the Biological Barriers. Angewandte Chemie - International Edition, 2020, 59, 19787-19795.	7.2	88
24	Constructing Electron Levers in Perovskite Nanocrystals to Regulate the Local Electron Density for Intensive Chemodynamic Therapy. Angewandte Chemie - International Edition, 2021, 60, 8905-8912.	7.2	83
25	SnWO4-based nanohybrids with full energy transfer for largely enhanced photodynamic therapy and radiotherapy. Biomaterials, 2018, 155, 135-144.	5.7	77
26	Emerging mRNA technologies: delivery strategies and biomedical applications. Chemical Society Reviews, 2022, 51, 3828-3845.	18.7	76
27	Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharmaceutica Sinica B, 2022, 12, 2206-2223.	5.7	52
28	A multifunctional nanotheranostic for the intelligent MRI diagnosis and synergistic treatment of hypoxic tumor. Biomaterials, 2018, 175, 123-133.	5.7	49
29	Transition Metal Dichalcogenides for Sensing and Oncotherapy: Status, Challenges, and Perspective. Advanced Functional Materials, 2021, 31, 2004408.	7.8	49
30	Cryogenic Exfoliation of 2D Stanene Nanosheets for Cancer Theranostics. Nano-Micro Letters, 2021, 13, 90.	14.4	43
31	Glucose-responsive oral insulin delivery platform for one treatment a day in diabetes. Matter, 2021, 4, 3269-3285.	5.0	36
32	In Situ Catalytic Reaction for Solving the Aggregation of Hydrophobic Photosensitizers in Tumor. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5624-5632.	4.0	35
33	Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy. Acta Pharmaceutica Sinica B, 2021, 11, 3447-3464.	5.7	35
34	Intercalation-Driven Formation of siRNA Nanogels for Cancer Therapy. Nano Letters, 2021, 21, 9706-9714.	4.5	33
35	Structure-oriented catalytic radiosensitization for cancer radiotherapy. Nano Today, 2020, 35, 100988.	6.2	32
36	Chemical Factoryâ€Guaranteed Enhanced Chemodynamic Therapy for Orthotopic Liver Cancer. Advanced Science, 2022, 9, .	5.6	30

3

#	Article	IF	CITATIONS
37	Sensitive, Rapid, Low-Cost, and Multiplexed COVID-19 Monitoring by the Wireless Telemedicine Platform. Matter, 2020, 3, 1818-1820.	5.0	27
38	In Vivo MR Imaging of Glioma Recruitment of Adoptive Tâ€Cells Labeled with NaGdF ₄ â€TAT Nanoprobes. Small, 2018, 14, 1702951.	5.2	26
39	Cathodic protected Mn2+ by NaxWO3 nanorods for stable magnetic resonance imaging-guided tumor photothermal therapy. Biomaterials, 2020, 234, 119762.	5.7	21
40	One-step and facile synthesis of peptide-like poly(melphalan) nanodrug for cancer therapy. Nano Today, 2021, 37, 101098.	6.2	19
41	Photoelectron Transfer at ZnTPyP Self-Assembly/TiO ₂ Interfaces for Enhanced Two-Photon Photodynamic Therapy. ACS Applied Materials & Distribution Photodynamic Photodyna	4.0	18
42	Auger Electrons Constructed Active Sites on Nanocatalysts for Catalytic Internal Radiotherapy. Advanced Science, 2020, 7, 1903585.	5.6	16
43	Constructing Electron Levers in Perovskite Nanocrystals to Regulate the Local Electron Density for Intensive Chemodynamic Therapy. Angewandte Chemie, 2021, 133, 8987-8994.	1.6	15
44	Arsenene Nanodots with Selective Killing Effects and their Lowâ€Dose Combination with ßâ€Elemene for Cancer Therapy (Adv. Mater. 37/2021). Advanced Materials, 2021, 33, 2170292.	11.1	15
45	An Adaptable Nanoplatform for Integrating Anatomic and Functional Magnetic Resonance Imaging under a 3.0 T Magnetic Field. Advanced Functional Materials, 2019, 29, 1803832.	7.8	14
46	Regulating water states by vacancies for cancer therapy. Nano Today, 2021, 37, 101099.	6.2	14
47	Advanced Devices for Tumor Diagnosis and Therapy. Small, 2021, 17, 2100003.	5.2	14
48	Staneneâ€Based Nanosheets for βâ€Elemene Delivery and Ultrasoundâ€Mediated Combination Cancer Therapy. Angewandte Chemie, 2021, 133, 7231-7240.	1.6	12
49	Tumor Immune Microenvironments (TIMEs): Responsive Nanoplatforms for Antitumor Immunotherapy. Frontiers in Chemistry, 2020, 8, 804.	1.8	6
50	Plattformen f $\tilde{A}\frac{1}{4}$ r die orale Insulinabgabe: Strategien zur Beseitigung der biologischen Barrieren. Angewandte Chemie, 2020, 132, 19955-19964.	1.6	5
51	Rücktitelbild: Plattformen für die orale Insulinabgabe: Strategien zur Beseitigung der biologischen Barrieren (Angew. Chem. 45/2020). Angewandte Chemie, 2020, 132, 20424-20424.	1.6	1
52	Titelbild: Staneneâ€Based Nanosheets for βâ€Elemene Delivery and Ultrasoundâ€Mediated Combination Cancer Therapy (Angew. Chem. 13/2021). Angewandte Chemie, 2021, 133, 6905-6905.	1.6	0