Barbara J Knowlton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3129195/publications.pdf

Version: 2024-02-01

78 papers 11,639 citations

94269 37 h-index 77 g-index

78 all docs

78 docs citations

78 times ranked 9572 citing authors

#	Article	IF	CITATIONS
1	The role of the basal ganglia in habit formation. Nature Reviews Neuroscience, 2006, 7, 464-476.	4.9	1,974
2	Learning and Memory Functions of the Basal Ganglia. Annual Review of Neuroscience, 2002, 25, 563-593.	5.0	1,609
3	Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. European Journal of Neuroscience, 2004, 19, 181-189.	1.2	1,019
4	The role of the dorsomedial striatum in instrumental conditioning. European Journal of Neuroscience, 2005, 22, 513-523.	1.2	896
5	Remembering episodes: a selective role for the hippocampus during retrieval. Nature Neuroscience, 2000, 3, 1149-1152.	7.1	824
6	The learning of categories: parallel brain systems for item memory and category knowledge. Science, 1993, 262, 1747-1749.	6.0	490
7	Modulation of competing memory systems by distraction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11778-11783.	3.3	465
8	Inactivation of dorsolateral striatum enhances sensitivity to changes in the action–outcome contingency in instrumental conditioning. Behavioural Brain Research, 2006, 166, 189-196.	1.2	441
9	Intact Artificial Grammar Learning in Amnesia: Dissociation of Classification Learning and Explicit Memory for Specific Instances. Psychological Science, 1992, 3, 172-179.	1.8	294
10	A Dissociation of Encoding and Retrieval Processes in the Human Hippocampus. Journal of Neuroscience, 2005, 25, 3280-3286.	1.7	290
11	A Neurocomputational Model of Analogical Reasoning and its Breakdown in Frontotemporal Lobar Degeneration. Journal of Cognitive Neuroscience, 2004, 16, 260-271.	1.1	240
12	Contributions of Striatal Subregions to Place and Response Learning. Learning and Memory, 2004, 11, 459-463.	0.5	194
13	Remembering and knowing: Two different expressions of declarative memory Journal of Experimental Psychology: Learning Memory and Cognition, 1995, 21, 699-710.	0.7	177
14	Relational Integration, Inhibition, and Analogical Reasoning in Older Adults Psychology and Aging, 2004, 19, 581-591.	1.4	166
15	Retrograde amnesia. Hippocampus, 2001, 11, 50-55.	0.9	161
16	Neural substrates of motor memory consolidation depend on practice structure. Nature Neuroscience, 2010, 13, 923-925.	7.1	156
17	An Implicit Learning Task Activates Medial Temporal Lobe in Patients With Parkinson's Disease Behavioral Neuroscience, 2004, 118, 438-442.	0.6	146
18	Intact implicit habit learning in Alzheimer's disease Behavioral Neuroscience, 2002, 116, 722-726.	0.6	122

#	Article	IF	CITATIONS
19	Common and Dissociable Prefrontal Loci Associated with Component Mechanisms of Analogical Reasoning. Cerebral Cortex, 2010, 20, 524-533.	1.6	115
20	A neurocomputational system for relational reasoning. Trends in Cognitive Sciences, 2012, 16, 373-381.	4.0	113
21	Distraction during relational reasoning: The role of prefrontal cortex in interference control. Neuropsychologia, 2008, 46, 2020-2032.	0.7	103
22	The hippocampus, consolidation and on-line memory. Current Opinion in Neurobiology, 1998, 8, 293-296.	2.0	99
23	Human Hippocampal CA1 Involvement during Allocentric Encoding of Spatial Information. Journal of Neuroscience, 2009, 29, 10512-10519.	1.7	91
24	Effects of US devaluation on win–stay and win–shift radial maze performance in rats Behavioral Neuroscience, 2000, 114, 295-306.	0.6	87
25	The effect of testing procedure on remember-know judgments. Psychonomic Bulletin and Review, 2002, 9, 139-145.	1.4	84
26	Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 578-592.	1.0	79
27	Brain–behavior correlates of optimizing learning through interleaved practice. Neurolmage, 2011, 56, 1758-1772.	2.1	71
28	The relationship between remembering and knowing: A cognitive neuroscience perspective. Acta Psychologica, 1998, 98, 253-265.	0.7	69
29	The neural correlates of recollection: Hippocampal activation declines as episodic memory fades. Hippocampus, 2009, 19, 265-272.	0.9	58
30	Effects of aging on value-directed modulation of semantic network activity during verbal learning. Neurolmage, 2016, 125, 1046-1062.	2.1	56
31	Remember and know judgments during recognition in chronic schizophrenia. Schizophrenia Research, 2008, 100, 181-190.	1.1	49
32	Longitudinal stability of social cognition in schizophrenia: A 5-year follow-up of social perception and emotion processing. Schizophrenia Research, 2016, 176, 467-472.	1.1	48
33	Secondary-task effects on classification learning. Memory and Cognition, 2007, 35, 864-874.	0.9	47
34	Neural Activity in the Hippocampus and Perirhinal Cortex during Encoding Is Associated with the Durability of Episodic Memory. Journal of Cognitive Neuroscience, 2010, 22, 2652-2662.	1.1	47
35	Remember–Know judgments and retrieval of contextual details. Acta Psychologica, 2006, 122, 160-173.	0.7	45
36	Interleaved practice enhances skill learning and the functional connectivity of frontoâ€parietal networks. Human Brain Mapping, 2013, 34, 1542-1558.	1.9	44

#	Article	IF	CITATIONS
37	Specific responses of human hippocampal neurons are associated with better memory. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10503-10508.	3.3	44
38	Putting the brakes on the brakes: negative emotion disrupts cognitive control network functioning and alters subsequent stopping ability. Experimental Brain Research, 2016, 234, 3107-3118.	0.7	42
39	Age related differences in the neural substrates of motor sequence learning after interleaved and repetitive practice. Neurolmage, 2012, 62, 2007-2020.	2.1	37
40	Recognizing what matters: Value improves recognition by selectively enhancing recollection. Journal of Memory and Language, 2017, 94, 195-205.	1.1	36
41	Memory and Reward-Based Learning: A Value-Directed Remembering Perspective. Annual Review of Psychology, 2022, 73, 25-52.	9.9	36
42	Forget me not: Encoding processes in value-directed remembering. Journal of Memory and Language, 2019, 106, 29-39.	1.1	34
43	Habit Formation and the Striatum. Current Topics in Behavioral Neurosciences, 2016, 37, 275-295.	0.8	30
44	Free recall test experience potentiates strategy-driven effects of value on memory Journal of Experimental Psychology: Learning Memory and Cognition, 2017, 43, 1581-1601.	0.7	29
45	Hemispheric Differences in Object Identification. Brain and Cognition, 2001, 45, 119-128.	0.8	26
46	Stimulation of the right entorhinal white matter enhances visual memory encoding in humans. Brain Stimulation, 2021, 14, 131-140.	0.7	24
47	The effects of value on context-item associative memory in younger and older adults Psychology and Aging, 2018, 33, 46-56.	1.4	24
48	Contextual interference effects in sequence learning for young and older adults Psychology and Aging, 2010, 25, 929-939.	1.4	23
49	The impact of cerebellar transcranial direct current stimulation (tDCS) on learning fine-motor sequences. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160050.	1.8	23
50	Paradoxical Decision-Making: A Framework for Understanding Cognition in Parkinson's Disease. Trends in Neurosciences, 2018, 41, 512-525.	4.2	22
51	Enhanced Motor Learning in Older Adults Is Accompanied by Increased Bilateral Frontal and Fronto-Parietal Connectivity. Brain Connectivity, 2012, 2, 56-68.	0.8	21
52	Contributions of Feature Binding During Encoding and Functional Connectivity of the Medial Temporal Lobe Structures to Episodic Memory Deficits Across the Prodromal and First-Episode Phases of Schizophrenia. Clinical Psychological Science, 2015, 3, 159-174.	2.4	21
53	Age-related differences in memory after attending to distinctiveness or similarity during learning. Aging, Neuropsychology, and Cognition, 2015, 22, 155-169.	0.7	17
54	Enhanced Avoidance Habits in Relation to History of Early-Life Stress. Frontiers in Psychology, 2019, 10, 1876.	1.1	17

#	Article	IF	Citations
55	The effect of earlyâ€life stress on memory systems supporting instrumental behavior. Hippocampus, 2013, 23, 1025-1034.	0.9	16
56	Contextual interference enhances motor learning through increased resting brain connectivity during memory consolidation. NeuroImage, 2018, 181, 1-15.	2.1	15
57	Dissociating the effects of featural and conceptual interference on multiple target processing in rapid serial visual presentation. Perception & Psychophysics, 2000, 62, 187-195.	2.3	11
58	Long-term retinotopic priming in object identification. Perception & Psychophysics, 2000, 62, 953-959.	2.3	11
59	Concurrent discrimination learning in Parkinson's disease Behavioral Neuroscience, 2010, 124, 1-8.	0.6	11
60	Framing effects in value-directed remembering. Memory and Cognition, 2022, 50, 1350-1361.	0.9	10
61	Interleaved practice benefits implicit sequence learning and transfer. Memory and Cognition, 2021, 49, 1436-1452.	0.9	9
62	White matter integrity in brain structures supporting semantic processing is associated with value-directed remembering in older adults. Neuropsychologia, 2019, 129, 246-254.	0.7	8
63	Early-life stress is associated with a preponderance of habitual responding in a novel instrumental avoidance learning paradigm. Neurobiology of Learning and Memory, 2020, 175, 107316.	1.0	8
64	Effects of Age-Related Stereotype Threat on Metacognition. Frontiers in Psychology, 2020, 11, 604978.	1.1	8
65	Cerebellar activation during motor sequence learning is associated with subsequent transfer to new sequences Behavioral Neuroscience, 2016, 130, 572-584.	0.6	8
66	Responses of neurons in the medial temporal lobe during encoding and recognition of face-scene pairs. Neuropsychologia, 2016, 90, 200-209.	0.7	7
67	Episodic Memory for Dynamic Social Interaction Across Phase of Illness in Schizophrenia. Schizophrenia Bulletin, 2018, 44, 620-630.	2.3	6
68	Social vs. non-social measures of learning potential for predicting community functioning across phase of illness in schizophrenia. Schizophrenia Research, 2019, 204, 104-110.	1.1	6
69	Visual priming of inverted and rotated objects Journal of Experimental Psychology: Learning Memory and Cognition, 2009, 35, 837-848.	0.7	5
70	Benefit of interleaved practice of motor skills is associated with changes in functional brain network topology that differ between younger and older adults. Neurobiology of Aging, 2016, 42, 189-198.	1.5	5
71	Memory Recall for High Reward Value Items Correlates With Individual Differences in White Matter Pathways Associated With Reward Processing and Fronto-Temporal Communication. Frontiers in Human Neuroscience, 2018, 12, 241.	1.0	5
72	When reasoning modifies memory: Schematic assimilation triggered by analogical mapping. Journal of Experimental Psychology: Learning Memory and Cognition, 2014, 40, 1172-1180.	0.7	4

#	Article	IF	CITATIONS
73	Recall, recognition, and the medial temporal lobes. Behavioral and Brain Sciences, 1999, 22, 455-456.	0.4	3
74	The time course of object encoding. Acta Psychologica, 2009, 132, 213-220.	0.7	3
75	Relational complexity, the central executive, and prefrontal cortex. Behavioral and Brain Sciences, 1998, 21, 846-847.	0.4	2
76	Introduction to the special section on new ideas about cerebellar function Behavioral Neuroscience, 2016, 130, 545-546.	0.6	2
77	Chapter 10 Implicit learning and memory. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 88, 225-236.	1.0	1
78	Retention systems of the brain: Evidence from neuropsychological patients. Behavioral and Brain Sciences, 2003, 26, 743-744.	0.4	0