## Ananias A Escalante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3129128/publications.pdf

Version: 2024-02-01

38742 51608 8,756 154 50 86 citations g-index h-index papers 158 158 158 6464 docs citations times ranked citing authors all docs

| #  | Article                                                                                                                                                                                                                           | IF               | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 1  | Evolutionary Insights into the Microneme-Secreted, Chitinase-Containing High-Molecular-Weight Protein Complexes Involved in <i>Plasmodium</i> Invasion of the Mosquito Midgut. Infection and Immunity, 2022, 90, IAI0031421.      | 2.2              | 5         |
| 2  | Complement component 3 mutations alter the longitudinal risk of pediatric malaria and severe malarial anemia. Experimental Biology and Medicine, 2022, 247, 672-682.                                                              | 2.4              | 3         |
| 3  | Larval habitats, species composition and distribution of malaria vectors in regions with autochthonous and imported malaria in Roraima state, Brazil. Malaria Journal, 2022, 21, 13.                                              | 2.3              | 2         |
| 4  | Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities. Malaria Journal, 2022, 21, 139.                                                                              | 2.3              | 15        |
| 5  | The evolution of primate malaria parasites: A study on the origin and diversification of Plasmodium in lemurs. Molecular Phylogenetics and Evolution, 2022, 174, 107551.                                                          | 2.7              | 3         |
| 6  | Complexity of malaria transmission dynamics in the Brazilian Atlantic Forest. Current Research in Parasitology and Vector-borne Diseases, 2021, 1, 100032.                                                                        | 1.9              | 5         |
| 7  | Plasmodium ouropretensis, n. sp., a new case of non-erythrocytic species within lizard malaria parasites. Parasitology, 2021, 148, 1467-1474.                                                                                     | 1.5              | 1         |
| 8  | The apicoplast of Haemoproteus columbae: A comparative study of this organelle genome in Haemosporida. Molecular Phylogenetics and Evolution, 2021, 161, 107185.                                                                  | 2.7              | 8         |
| 9  | Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infectious Diseases, The, 2021, 21, 1120-1128. | 9.1              | 231       |
| 10 | The clinical–epidemiological profile of malaria patients from Southern Venezuela, a critical hotspot in Latin America. Malaria Journal, 2021, 20, 375.                                                                            | 2.3              | 1         |
| 11 | Negligible evidence for detrimental effects of Leucocytozoon infections among Emperor Geese (Anser) Tj ETQq1 Parasites and Wildlife, 2021, 16, 103-112.                                                                           | 1 0.7843]<br>1.5 |           |
| 12 | Malaria in Southern Venezuela: The hottest hotspot in Latin America. PLoS Neglected Tropical Diseases, 2021, 15, e0008211.                                                                                                        | 3.0              | 33        |
| 13 | Changes in the frequencies of Plasmodium falciparum dhps and dhfr drug-resistant mutations in children from Western Kenya from 2005 to 2018: the rise of Pfdhps S436H. Malaria Journal, 2020, 19, 378.                            | 2.3              | 14        |
| 14 | The endangered California Condor (Gymnogyps californianus) population is exposed to local haemosporidian parasites. Scientific Reports, 2020, 10, 17947.                                                                          | 3.3              | 4         |
| 15 | Malaria in Venezuela: changes in the complexity of infection reflects the increment in transmission intensity. Malaria Journal, 2020, 19, 176.                                                                                    | 2.3              | 24        |
| 16 | Cophylogenetic Patterns and Speciation in Avian Haemosporidians. , 2020, , 401-427.                                                                                                                                               |                  | 2         |
| 17 | A phylogenetic study of Haemocystidium parasites and other Haemosporida using complete mitochondrial genome sequences. Infection, Genetics and Evolution, 2020, 85, 104576.                                                       | 2.3              | 9         |
| 18 | The impact of imported malaria by gold miners in Roraima: characterizing the spatial dynamics of autochthonous and imported malaria in an urban region of Boa Vista. Memorias Do Instituto Oswaldo Cruz, 2020, 115, e200043.      | 1.6              | 16        |

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Malaria Molecular Epidemiology: An Evolutionary Genetics Perspective. Microbiology Spectrum, 2019, 7, .                                                                                                                                                                | 3.0 | 31        |
| 20 | Integrating environmental and neighborhood factors in MaxEnt modeling to predict species distributions: A case study of Aedes albopictus in southeastern Pennsylvania. PLoS ONE, 2019, 14, e0223821.                                                                   | 2.5 | 19        |
| 21 | Microsatellite analysis reveals connectivity among geographically distant transmission zones of Plasmodium vivax in the Peruvian Amazon: A critical barrier to regional malaria elimination. PLoS Neglected Tropical Diseases, 2019, 13, e0007876.                     | 3.0 | 15        |
| 22 | Haemocystidium spp., a species complex infecting ancient aquatic turtles of the family Podocnemididae: First report of these parasites in Podocnemis vogli from the Orinoquia. International Journal for Parasitology: Parasites and Wildlife, 2019, 10, 299-309.      | 1.5 | 7         |
| 23 | Disentangling Leucocytozoon parasite diversity in the neotropics: Descriptions of two new species and shortcomings of molecular diagnostics for leucocytozoids. International Journal for Parasitology: Parasites and Wildlife, 2019, 9, 159-173.                      | 1.5 | 23        |
| 24 | Evolution and Genetic Diversity of the $\langle i \rangle k13 \langle i \rangle$ Gene Associated with Artemisinin Delayed Parasite Clearance in Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2019, 63, .                                              | 3.2 | 15        |
| 25 | Limited differentiation among Plasmodium vivax populations from the northwest and to the south Pacific Coast of Colombia: A malaria corridor?. PLoS Neglected Tropical Diseases, 2019, 13, e0007310.                                                                   | 3.0 | 31        |
| 26 | Blood parasites infecting the Hoatzin ( <i>Opisthocomus hoazin</i> ), a unique neotropical folivorous bird. PeerJ, 2019, 7, e6361.                                                                                                                                     | 2.0 | 8         |
| 27 | Title is missing!. , 2019, 13, e0007876.                                                                                                                                                                                                                               |     | 0         |
| 28 | Title is missing!. , 2019, 13, e0007876.                                                                                                                                                                                                                               |     | 0         |
| 29 | Title is missing!. , 2019, 13, e0007876.                                                                                                                                                                                                                               |     | 0         |
| 30 | Title is missing!. , 2019, 13, e0007876.                                                                                                                                                                                                                               |     | 0         |
| 31 | Plasmodium parasites in reptiles from theÂColombia Orinoco-Amazon basin: a re-description of Plasmodium kentropyxi Lainson R, Landau I, Paperna I, 2001 and Plasmodium carmelinoi Lainson R, Franco CM, da Matta R, 2010. Parasitology Research, 2018, 117, 1357-1370. | 1.6 | 11        |
| 32 | Primers targeting mitochondrial genes of avian haemosporidians: PCR detection and differential DNA amplification of parasites belonging to different genera. International Journal for Parasitology, 2018, 48, 657-670.                                                | 3.1 | 60        |
| 33 | Mode and Rate of Evolution of Haemosporidian Mitochondrial Genomes: Timing the Radiation of Avian Parasites. Molecular Biology and Evolution, 2018, 35, 383-403.                                                                                                       | 8.9 | 122       |
| 34 | Human migration and the spread of malaria parasites to the New World. Scientific Reports, 2018, 8, 1993.                                                                                                                                                               | 3.3 | 76        |
| 35 | A new pathogen spillover from domestic to wild animals: <i>Plasmodium juxtanucleare</i> infects free-living passerines in Brazil. Parasitology, 2018, 145, 1949-1958.                                                                                                  | 1.5 | 29        |
| 36 | Evolution of the merozoite surface protein 7 ( msp7 ) family in Plasmodium vivax and P . falciparum : A comparative approach. Infection, Genetics and Evolution, 2017, 50, 7-19.                                                                                       | 2.3 | 11        |

| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Characterizing the malaria rural-to-urban transmission interface: The importance of reactive case detection. PLoS Neglected Tropical Diseases, 2017, 11, e0005780.                                                                                                             | 3.0 | 37        |
| 38 | Chronic Plasmodium brasilianum infections in wild Peruvian tamarins. PLoS ONE, 2017, 12, e0184504.                                                                                                                                                                             | 2.5 | 16        |
| 39 | Phylogeographic Evidence for 2 Genetically Distinct ZoonoticPlasmodium knowlesiParasites,<br>Malaysia. Emerging Infectious Diseases, 2016, 22, 1371-1380.                                                                                                                      | 4.3 | 45        |
| 40 | Leucocytozoon Diversity and Possible Vectors in the Neotropical highlands of Colombia. Protist, 2016, 167, 185-204.                                                                                                                                                            | 1.5 | 49        |
| 41 | Prospective Study of Plasmodium vivax Malaria Recurrence after Radical Treatment with a Chloroquine-Primaquine Standard Regimen in Turbo, Colombia. Antimicrobial Agents and Chemotherapy, 2016, 60, 4610-4619.                                                                | 3.2 | 13        |
| 42 | Malaria in pregnancy: a passive surveillance study of pregnant women in low transmission areas of Colombia, Latin America. Malaria Journal, 2016, 15, 66.                                                                                                                      | 2.3 | 20        |
| 43 | Profiles of low complexity regions in Apicomplexa. BMC Evolutionary Biology, 2016, 16, 47.                                                                                                                                                                                     | 3.2 | 21        |
| 44 | Haemoproteus erythrogravidus n. sp. (Haemosporida, Haemoproteidae): Description and molecular characterization of a widespread blood parasite of birds in South America. Acta Tropica, 2016, 159, 83-94.                                                                       | 2.0 | 24        |
| 45 | Multiplicity of Infection and Disease Severity in Plasmodium vivax. PLoS Neglected Tropical Diseases, 2016, 10, e0004355.                                                                                                                                                      | 3.0 | 46        |
| 46 | Evolution of the Transmission-Blocking Vaccine Candidates Pvs28 and Pvs25 in Plasmodium vivax: Geographic Differentiation and Evidence of Positive Selection. PLoS Neglected Tropical Diseases, 2016, 10, e0004786.                                                            | 3.0 | 19        |
| 47 | The effect of local variation in malaria transmission on the prevalence of sulfadoxine–pyrimethamine resistant haplotypes and selective sweep characteristics in Malawi. Malaria Journal, 2015, 14, 387.                                                                       | 2.3 | 5         |
| 48 | Longitudinal analysis of Plasmodium falciparum genetic variation in Turbo, Colombia: implications for malaria control and elimination. Malaria Journal, 2015, 14, 363.                                                                                                         | 2.3 | 19        |
| 49 | Whole Genome Sequencing of Field Isolates Reveals Extensive Genetic Diversity in Plasmodium vivax from Colombia. PLoS Neglected Tropical Diseases, 2015, 9, e0004252.                                                                                                          | 3.0 | 49        |
| 50 | Molecular Evolution of PvMSP3α Block II in Plasmodium vivax from Diverse Geographic Origins. PLoS ONE, 2015, 10, e0135396.                                                                                                                                                     | 2.5 | 13        |
| 51 | Genome-Wide Patterns of Genetic Polymorphism and Signatures of Selection in Plasmodium vivax.<br>Genome Biology and Evolution, 2015, 7, 106-119.                                                                                                                               | 2.5 | 44        |
| 52 | Accelerated Diversification of Nonhuman Primate Malarias in Southeast Asia: Adaptive Radiation or Geographic Speciation?. Molecular Biology and Evolution, 2015, 32, 422-439.                                                                                                  | 8.9 | 73        |
| 53 | The geography of malaria genetics in the Democratic Republic of Congo: A complex and fragmented landscape. Social Science and Medicine, 2015, 133, 233-241.                                                                                                                    | 3.8 | 18        |
| 54 | Leucocytozoon pterotenuis sp. nov. (Haemosporida, Leucocytozoidae): description of the morphologically unique species from the Grallariidae birds, with remarks on the distribution of Leucocytozoon parasites in the Neotropics. Parasitology Research, 2015, 114, 1031-1044. | 1.6 | 23        |

| #  | Article                                                                                                                                                                                                                           | IF                | CITATIONS          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 55 | Persistence of Sulfadoxine-Pyrimethamine Resistance Despite Reduction of Drug Pressure in Malawi. Journal of Infectious Diseases, 2015, 212, 694-701.                                                                             | 4.0               | 25                 |
| 56 | Population Genetics, Evolutionary Genomics, and Genome-Wide Studies of Malaria: A View Across the International Centers of Excellence for Malaria Research. American Journal of Tropical Medicine and Hygiene, 2015, 93, 87-98.   | 1.4               | 22                 |
| 57 | Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria<br>Research Network. American Journal of Tropical Medicine and Hygiene, 2015, 93, 79-86.                                         | 1.4               | 80                 |
| 58 | A Likelihood Approach to Estimate the Number of Co-Infections. PLoS ONE, 2014, 9, e97899.                                                                                                                                         | 2.5               | 19                 |
| 59 | A Population Genetic Model for the Initial Spread of Partially Resistant Malaria Parasites under<br>Anti-Malarial Combination Therapy and Weak Intrahost Competition. PLoS ONE, 2014, 9, e101601.                                 | 2.5               | 16                 |
| 60 | Description of Leucocytozoon quynzae sp. nov. (Haemosporida, Leucocytozoidae) from hummingbirds, with remarks on distribution and possible vectors of leucocytozoids in South America. Parasitology Research, 2014, 113, 457-468. | 1.6               | 29                 |
| 61 | Description and molecular characterization of Haemoproteus macrovacuolatus n. sp. (Haemosporida,) Tj ETQq1 1 (Dendrocygna autumnalis) from South America. Parasitology Research, 2014, 113, 2991-3000.                            | . 0.784314<br>1.6 | 4 rgBT /Over<br>35 |
| 62 | Genetic variation and recurrent parasitaemia in Peruvian Plasmodium vivax populations. Malaria Journal, 2014, 13, 67.                                                                                                             | 2.3               | 15                 |
| 63 | The origin and diversification of the merozoite surface protein 3 (msp3) multi-gene family in Plasmodium vivax and related parasites. Molecular Phylogenetics and Evolution, 2014, 78, 172-184.                                   | 2.7               | 44                 |
| 64 | Identification of <i>Plasmodium (Haemamoeba) lutzi </i> (Lucena, 1939) from <i>Turdus fuscater </i> (Great Thrush) in Colombia. Journal of Parasitology, 2013, 99, 662-668.                                                       | 0.7               | 24                 |
| 65 | Fitness components and natural selection: why are there different patterns on the emergence of drug resistance in Plasmodium falciparum and Plasmodium vivax?. Malaria Journal, 2013, 12, 15.                                     | 2.3               | 15                 |
| 66 | Malarial parasite diversity in chimpanzees: the value of comparative approaches to ascertain the evolution of Plasmodium falciparum antigens. Malaria Journal, 2013, 12, 328.                                                     | 2.3               | 59                 |
| 67 | Merozoite surface protein-3 alpha as a genetic marker for epidemiologic studies in Plasmodium vivax: a cautionary note. Malaria Journal, 2013, 12, 288.                                                                           | 2.3               | 22                 |
| 68 | Population genetic structure of the Plasmodium vivax circumsporozoite protein (Pvcsp) in Sri Lanka. Gene, 2013, 518, 381-387.                                                                                                     | 2.2               | 24                 |
| 69 | The evolution and diversity of a low complexity vaccine candidate, merozoite surface protein 9 (MSP-9), in Plasmodium vivax and closely related species. Infection, Genetics and Evolution, 2013, 20, 239-248.                    | 2.3               | 18                 |
| 70 | Genomics, Population Genetics and Evolutionary History of Plasmodium vivax. Advances in Parasitology, 2013, 81, 203-222.                                                                                                          | 3.2               | 42                 |
| 71 | The Evolutionary History of Plasmodium vivax as Inferred from Mitochondrial Genomes: Parasite Genetic Diversity in the Americas. Molecular Biology and Evolution, 2013, 30, 2050-2064.                                            | 8.9               | 110                |
| 72 | Population dynamics of rhesus macaques and associated foamy virus in Bangladesh. Emerging Microbes and Infections, 2013, 2, 1-14.                                                                                                 | 6.5               | 32                 |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|
| 73 | Real-Time Loop-Mediated Isothermal Amplification (RealAmp) for the Species-Specific Identification of Plasmodium vivax. PLoS ONE, 2013, 8, e54986.                                                                  | 2.5  | 68         |
| 74 | Historical Shifts in Brazilian P. falciparum Population Structure and Drug Resistance Alleles. PLoS ONE, 2013, 8, e58984.                                                                                           | 2.5  | 17         |
| 75 | Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nature Genetics, 2012, 44, 1051-1055.                                                                     | 21.4 | 172        |
| 76 | Malaria in selected non-Amazonian countries of Latin America. Acta Tropica, 2012, 121, 303-314.                                                                                                                     | 2.0  | 76         |
| 77 | Malaria evolution in South Asia: Knowledge for control and elimination. Acta Tropica, 2012, 121, 256-266.                                                                                                           | 2.0  | 14         |
| 78 | The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nature Genetics, 2012, 44, 1046-1050.                                                                          | 21.4 | 256        |
| 79 | Local population structure of Plasmodium: impact on malaria control and elimination. Malaria<br>Journal, 2012, 11, 412.                                                                                             | 2.3  | <b>7</b> 3 |
| 80 | Differences in selective pressure on dhps and dhfr drug resistant mutations in western Kenya. Malaria Journal, 2012, 11, 77.                                                                                        | 2.3  | 45         |
| 81 | Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax. Malaria Journal, 2012, 11, 68.                                                                         | 2.3  | 46         |
| 82 | The Origin of Malarial Parasites in Orangutans. PLoS ONE, 2012, 7, e34990.                                                                                                                                          | 2.5  | 38         |
| 83 | Genetic backgrounds of the Plasmodium falciparum chloroquine resistant transporter (pfcrt) alleles in Pakistan. Infection, Genetics and Evolution, 2012, 12, 278-281.                                               | 2.3  | 10         |
| 84 | Evidence of purifying selection on merozoite surface protein 8 (MSP8) and 10 (MSP10) in Plasmodium spp Infection, Genetics and Evolution, 2012, 12, 978-986.                                                        | 2.3  | 65         |
| 85 | Plasmodium vivax populations revisited: mitochondrial genomes of temperate strains in Asia suggest ancient population expansion. BMC Evolutionary Biology, 2012, 12, 22.                                            | 3.2  | 19         |
| 86 | Evaluation of the genetic diversity of domain II of Plasmodium vivax Apical Membrane Antigen 1 (PvAMA-1) and the ensuing strain-specific immune responses in patients from Sri Lanka. Vaccine, 2011, 29, 7491-7504. | 3.8  | 25         |
| 87 | South American Plasmodium falciparum after the Malaria Eradication Era: Clonal Population Expansion and Survival of the Fittest Hybrids. PLoS ONE, 2011, 6, e23486.                                                 | 2.5  | 66         |
| 88 | Haemosporidian infection in captive masked bobwhite quail (Colinus virginianus ridgwayi), an endangered subspecies of the northern bobwhite quail. Veterinary Parasitology, 2011, 182, 113-120.                     | 1.8  | 39         |
| 89 | Timing the origin of human malarias: the lemur puzzle. BMC Evolutionary Biology, 2011, 11, 299.                                                                                                                     | 3.2  | 85         |
| 90 | Genetic diversity of Plasmodium vivax Duffy Binding Protein II (PvDBPII) under unstable transmission and low intensity malaria in Sri Lanka. Infection, Genetics and Evolution, 2011, 11, 1327-1339.                | 2.3  | 37         |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Genetic diversity and recombination at the C-terminal fragment of the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) in Sri Lanka. Infection, Genetics and Evolution, 2011, 11, 145-156.                               | 2.3  | 29        |
| 92  | Antigenic Diversity of the Plasmodium vivax Circumsporozoite Protein in Parasite Isolates of Western Colombia. American Journal of Tropical Medicine and Hygiene, 2011, 84, 51-57.                                                | 1.4  | 24        |
| 93  | Applied Genomics: Data Mining Reveals Species-Specific Malaria Diagnostic Targets More Sensitive than 18S rRNA. Journal of Clinical Microbiology, 2011, 49, 2411-2418.                                                            | 3.9  | 74        |
| 94  | Tracking Origins and Spread of Sulfadoxine-Resistant <i>Plasmodium falciparum dhps</i> Alleles in Thailand. Antimicrobial Agents and Chemotherapy, 2011, 55, 155-164.                                                             | 3.2  | 40        |
| 95  | Evolution of Modern Birds Revealed by Mitogenomics: Timing the Radiation and Origin of Major Orders. Molecular Biology and Evolution, 2011, 28, 1927-1942.                                                                        | 8.9  | 211       |
| 96  | Polymorphism of the Pv200L Fragment of Merozoite Surface Protein-1 of Plasmodium vivax in Clinical Isolates from the Pacific Coast of Colombia. American Journal of Tropical Medicine and Hygiene, 2011, 84, 64-70.               | 1.4  | 12        |
| 97  | Plasmodium falciparum Accompanied the Human Expansion out of Africa. Current Biology, 2010, 20, 1283-1289.                                                                                                                        | 3.9  | 121       |
| 98  | Evidence for negative selection on the gene encoding rhoptry-associated protein 1 (RAP-1) in Plasmodium spp Infection, Genetics and Evolution, 2010, 10, 655-661.                                                                 | 2.3  | 28        |
| 99  | Dynamics of Malaria Drug Resistance Patterns in the Amazon Basin Region following Changes in Peruvian National Treatment Policy for Uncomplicated Malaria. Antimicrobial Agents and Chemotherapy, 2010, 54, 2282-2282.            | 3.2  | 0         |
| 100 | pfmdr1 Amplification and Fixation of pfcrt Chloroquine Resistance Alleles in Plasmodium falciparum in Venezuela. Antimicrobial Agents and Chemotherapy, 2010, 54, 1572-1579.                                                      | 3.2  | 58        |
| 101 | Multiple Genetic Backgrounds of the Amplified <i>Plasmodium falciparum </i> Multidrug Resistance ( <i>pfmdr </i> )1) Gene and Selective Sweep of 184F Mutation in Cambodia. Journal of Infectious Diseases, 2010, 201, 1551-1560. | 4.0  | 54        |
| 102 | Two Nonrecombining Sympatric Forms of the Human Malaria Parasite < i>Plasmodium ovale Occur Globally. Journal of Infectious Diseases, 2010, 201, 1544-1550.                                                                       | 4.0  | 310       |
| 103 | Origin and Evolution of Sulfadoxine Resistant Plasmodium falciparum. PLoS Pathogens, 2010, 6, e1000830.                                                                                                                           | 4.7  | 114       |
| 104 | Characterizing molecular adaptation: a hierarchical approach to assess the selective influence of amino acid properties. Bioinformatics, 2010, 26, 2818-2825.                                                                     | 4.1  | 4         |
| 105 | On the Diversity of Malaria Parasites in African Apes and the Origin of Plasmodium falciparum from Bonobos. PLoS Pathogens, 2010, 6, e1000765.                                                                                    | 4.7  | 184       |
| 106 | Extreme Polymorphism in a Vaccine Antigen and Risk of Clinical Malaria: Implications for Vaccine Development. Science Translational Medicine, 2009, 1, 2ra5.                                                                      | 12.4 | 154       |
| 107 | The dynamics of mutations associated with anti-malarial drug resistance in Plasmodium falciparum. Trends in Parasitology, 2009, 25, 557-563.                                                                                      | 3.3  | 42        |
| 108 | Limited genetic variation in the Plasmodium falciparum heme detoxification protein (HDP). Infection, Genetics and Evolution, 2009, 9, 286-289.                                                                                    | 2.3  | 11        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Dynamics of Malaria Drug Resistance Patterns in the Amazon Basin Region following Changes in Peruvian National Treatment Policy for Uncomplicated Malaria. Antimicrobial Agents and Chemotherapy, 2009, 53, 2042-2051.                               | 3.2 | 64        |
| 110 | The spatial and temporal patterns of falciparum and vivax malaria in Perú: 1994–2006. Malaria Journal, 2009, 8, 142.                                                                                                                                 | 2.3 | 45        |
| 111 | Evolution and phylogeny of the heterogeneous cytosolic SSU rRNA genes in the genus Plasmodiumâ <sup>-</sup> †. Molecular Phylogenetics and Evolution, 2008, 47, 45-53.                                                                               | 2.7 | 53        |
| 112 | Comparative evolutionary genomics of human malaria parasites. Trends in Parasitology, 2008, 24, 545-550.                                                                                                                                             | 3.3 | 57        |
| 113 | Genetic diversity of vaccine candidate antigens in Plasmodium falciparum isolates from the Amazon basin of Peru. Malaria Journal, 2008, 7, 93.                                                                                                       | 2.3 | 49        |
| 114 | Decline in Sulfadoxine-Pyrimethamine-Resistant Alleles after Change in Drug Policy in the Amazon Region of Peru. Antimicrobial Agents and Chemotherapy, 2008, 52, 739-741.                                                                           | 3.2 | 44        |
| 115 | Assessing the Effect of Selection at the Amino Acid Level in Malaria Antigen Sequences Through Bayesian Generalized Linear Models. Journal of the American Statistical Association, 2008, 103, 1496-1507.                                            | 3.1 | 12        |
| 116 | Hitchhiking and Selective Sweeps of <i>Plasmodium falciparum</i> Sulfadoxine and Pyrimethamine Resistance Alleles in a Population from Central Africa. Antimicrobial Agents and Chemotherapy, 2008, 52, 4089-4097.                                   | 3.2 | 64        |
| 117 | Common Origin and Fixation of Plasmodium falciparum dhfr and dhps Mutations Associated with Sulfadoxine-Pyrimethamine Resistance in a Low-Transmission Area in South America. Antimicrobial Agents and Chemotherapy, 2007, 51, 2085-2091.            | 3.2 | 111       |
| 118 | A comparative study of the genetic diversity of the 42kDa fragment of the merozoite surface protein 1 in Plasmodium falciparum and P. vivax. Infection, Genetics and Evolution, 2007, 7, 180-187.                                                    | 2.3 | 43        |
| 119 | Recent independent evolution of msp1 polymorphism in Plasmodium vivax and related simian malaria parasites. Molecular and Biochemical Parasitology, 2007, 156, 74-79.                                                                                | 1.1 | 45        |
| 120 | Genetic diversity in the Block 2 region of the merozoite surface protein 1 (MSP-1) of Plasmodium falciparum: Additional complexity and selection and convergence in fragment size polymorphism. Infection, Genetics and Evolution, 2006, 6, 417-424. | 2.3 | 53        |
| 121 | The origin and age of Plasmodium vivax. Trends in Parasitology, 2006, 22, 558-563.                                                                                                                                                                   | 3.3 | 103       |
| 122 | Antifolate Resistance in Plasmodium falciparum: Multiple Origins and Identification of Noveldhfr Alleles. Journal of Infectious Diseases, 2006, 194, 189-197.                                                                                        | 4.0 | 122       |
| 123 | Pyrosequencing, a High-Throughput Method for Detecting Single Nucleotide Polymorphisms in the Dihydrofolate Reductase and Dihydropteroate Synthetase Genes of <i>Plasmodium falciparum</i> Journal of Clinical Microbiology, 2006, 44, 3900-3910.    | 3.9 | 57        |
| 124 | Molecular evolution and intragenic recombination of the merozoite surface protein MSP-3α from the malaria parasitePlasmodium vivaxin Thailand. Parasitology, 2005, 131, 25-35.                                                                       | 1.5 | 52        |
| 125 | A monkey's tale: The origin of Plasmodium vivax as a human malaria parasite. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1980-1985.                                                                  | 7.1 | 202       |
| 126 | Evolutionary Biology of Malarial Parasites. , 2004, , 75-112.                                                                                                                                                                                        |     | 1         |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Assessing the effect of natural selection in malaria parasites. Trends in Parasitology, 2004, 20, 388-395.                                                                                                                                                  | 3.3 | 99        |
| 128 | Genetic Distance in Housekeeping Genes Between Plasmodium falciparum and Plasmodium reichenowi and Within P. falciparum. Journal of Molecular Evolution, 2004, 59, 687-694.                                                                                 | 1.8 | 29        |
| 129 | The genetic diversity of Plasmodium vivax populations. Trends in Parasitology, 2003, 19, 220-226.                                                                                                                                                           | 3.3 | 115       |
| 130 | Intrinsic chaos and external noise in population dynamics. Physica A: Statistical Mechanics and Its Applications, 2003, 324, 723-732.                                                                                                                       | 2.6 | 5         |
| 131 | PHYLOGEOGRAPHY, POPULATION STRUCTURE, AND IMPLICATIONS FOR CONSERVATION OF WHITE-TAILED DEER (ODOCOILEUS VIRGINIANUS) IN VENEZUELA. Journal of Mammalogy, 2003, 84, 1300-1315.                                                                              | 1.3 | 23        |
| 132 | Polymorphism in the gene encoding the Pfs48/45 antigen of Plasmodium falciparum. XI. Asembo Bay Cohort Project. Molecular and Biochemical Parasitology, 2002, 119, 17-22.                                                                                   | 1.1 | 27        |
| 133 | A study of genetic diversity in the gene encoding the circumsporozoite protein (CSP) of Plasmodium falciparum from different transmission areasâ $\in$ "XVI. Asembo Bay Cohort Project. Molecular and Biochemical Parasitology, 2002, 125, 83-90.           | 1.1 | 61        |
| 134 | Evidence for intragenic recombination in Plasmodium falciparum: identification of a novel allele family in block 2 of merozoite surface protein-1: Asembo Bay Area Cohort Project XIV. Molecular and Biochemical Parasitology, 2002, 125, 163-171.          | 1.1 | 41        |
| 135 | Phylogenetic analysis of the genus Plasmodium based on the gene encoding adenylosuccinate lyase. Infection, Genetics and Evolution, 2002, 1, 297-301.                                                                                                       | 2.3 | 19        |
| 136 | Diversity and Evolution of the Envelope Gene of Dengue Virus Type 1. Virology, 2002, 303, 110-119.                                                                                                                                                          | 2.4 | 172       |
| 137 | Polymorphism in the gene encoding the apical membrane antigen-1 (AMA-1) of Plasmodium falciparum. X. Asembo Bay Cohort Project. Molecular and Biochemical Parasitology, 2001, 113, 279-287.                                                                 | 1.1 | 108       |
| 138 | Molecular tools and triatomine systematics: a public health perspective. Trends in Parasitology, 2001, 17, 344-347.                                                                                                                                         | 3.3 | 54        |
| 139 | Prevalence of point mutations in the dihydrofolate reductase and dihydropteroate synthetase genes of Plasmodium falciparum isolates from India and Thailand: a molecular epidemiologic study. Tropical Medicine and International Health, 2000, 5, 737-743. | 2.3 | 51        |
| 140 | Brief communication. The Rift Valley complex as a barrier to gene flow for Anopheles gambiae in Kenya: the mtDNA perspective. Journal of Heredity, 2000, 91, 165-168.                                                                                       | 2.4 | 50        |
| 141 | Mitochondrial DNA sequence variation among triatomine vectors of Chagas' disease American Journal of Tropical Medicine and Hygiene, 1999, 60, 377-386.                                                                                                      | 1.4 | 131       |
| 142 | The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8124-8129.                              | 7.1 | 344       |
| 143 | Genetic Polymorphism and Natural Selection in the Malaria Parasite Plasmodium falciparum. Genetics, 1998, 149, 189-202.                                                                                                                                     | 2.9 | 221       |
| 144 | Wild Primate Populations in Emerging Infectious Disease Research: The Missing Link?. Emerging Infectious Diseases, 1998, 4, 149-158.                                                                                                                        | 4.3 | 207       |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Genetic Polymorphism Among Cryptosporidium parvum Isolates: Evidence of Two Distinct Human Transmission Cycles. Emerging Infectious Diseases, 1997, 3, 567-573.                            | 4.3 | 339       |
| 146 | Phylogenetic study of the genus Plasmodium based on the secondary structure-based alignment of the small subunit ribosomal RNA. Molecular and Biochemical Parasitology, 1997, 90, 317-321. | 1.1 | 34        |
| 147 | The Evolution of Human Populations: A Molecular Perspective. Molecular Phylogenetics and Evolution, 1996, 5, 188-201.                                                                      | 2.7 | 73        |
| 148 | Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5793-5797.          | 7.1 | 204       |
| 149 | Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene Molecular Biology and Evolution, 1995, 12, 616-26.                                      | 8.9 | 184       |
| 150 | Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 11373-11377.       | 7.1 | 280       |
| 151 | Prognostic indicators of chronic chagasic cardiopathy. International Journal of Cardiology, 1991, 30, 195-202.                                                                             | 1.7 | 50        |
| 152 | Effect of albendazole in experimental toxocariasis of mice. Annals of Tropical Medicine and Parasitology, 1989, 83, 621-624.                                                               | 1.6 | 22        |
| 153 | Morphological differences between Venezuelan and African microfilariae of Onchocerca volvulus.<br>Journal of Helminthology, 1988, 62, 345-351.                                             | 1.0 | 7         |
| 154 | Malaria Vaccines. , 0, , 137-150.                                                                                                                                                          |     | 1         |