Artemio Mendoza-Mendoza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3129126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biology Reviews, 2022, 39, 15-33.	4.7	68
2	Editorial: Molecular Intricacies of Trichoderma-Plant-Pathogen Interactions. Frontiers in Fungal Biology, 2022, 3, .	2.0	2
3	Histidine kinase two-component response regulators Ssk1, Skn7 and Rim15 differentially control growth, developmental and volatile organic compounds emissions as stress responses in Trichoderma atroviride. Current Research in Microbial Sciences, 2022, 3, 100139.	2.3	2
4	Insights into Metabolic Changes Caused by the <i>Trichoderma virens</i> –Maize Root Interaction. Molecular Plant-Microbe Interactions, 2021, 34, 524-537.	2.6	14
5	Chemical communication between Trichoderma and plants. , 2020, , 109-139.		2
6	Isobenzofurans as Synthetic Intermediates: Synthesis and Biological Activity of 8―epi â€{–)â€Ajudazol B. European Journal of Organic Chemistry, 2020, 2020, 6661-6672.	2.4	3
7	TrichoGate: An Improved Vector System for a Large Scale of Functional Analysis of Trichoderma Genes. Frontiers in Microbiology, 2019, 10, 2794.	3.5	8
8	Molecular dialogues between Trichoderma and roots: Role of the fungal secretome. Fungal Biology Reviews, 2018, 32, 62-85.	4.7	183
9	The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins. Nature Communications, 2018, 9, 1711.	12.8	102
10	The Apoplastic Secretome of Trichoderma virens During Interaction With Maize Roots Shows an Inhibition of Plant Defence and Scavenging Oxidative Stress Secreted Proteins. Frontiers in Plant Science, 2018, 9, 409.	3.6	122
11	Detection of the Entomopathogenic Fungus Beauveria bassiana in the Rhizosphere of Wound-Stressed Zea mays Plants. Frontiers in Microbiology, 2018, 9, 1161.	3.5	38
12	The NADPH Oxidases Nox1 and Nox2 Differentially Regulate Volatile Organic Compounds, Fungistatic Activity, Plant Growth Promotion and Nutrient Assimilation in Trichoderma atroviride. Frontiers in Microbiology, 2018, 9, 3271.	3.5	31
13	Trichoderma down under: species diversity and occurrence of Trichoderma in New Zealand. Australasian Plant Pathology, 2017, 46, 11-30.	1.0	20
14	Yield and cold storage of <i>Trichoderma</i> conidia is influenced by substrate pH and storage temperature. Journal of Basic Microbiology, 2017, 57, 419-427.	3.3	3
15	Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion. Frontiers in Plant Science, 2017, 8, 102.	3.6	187
16	The rhizospheres of arid and semi-arid ecosystems are a source of microorganisms with growth-promoting potential , 2017, , 187-196.		2
17	Mechanisms of growth promotion by members of the rhizosphere fungal genus Trichoderma , 2017, , 1-15.		2
18	Epigenetics: from the past to the present. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2016, 9, 347-370.	1.1	43

#	Article	IF	CITATIONS
19	The density-dependent effect of initial nematode population levels on the efficacy of Trichoderma as a bio-nematicide against Meloidogyne hapla on tomato. Australasian Plant Pathology, 2016, 45, 473-479.	1.0	10
20	Methods for the Evaluation of the Bioactivity and Biocontrol Potential of Species of Trichoderma. Methods in Molecular Biology, 2016, 1477, 23-35.	0.9	12
21	Isolation and Mass Production of Trichoderma. Methods in Molecular Biology, 2016, 1477, 13-20.	0.9	7
22	The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiology and Molecular Biology Reviews, 2016, 80, 205-327.	6.6	194
23	Arabidopsis thaliana polyamine content is modified by the interaction with different Trichoderma species. Plant Physiology and Biochemistry, 2015, 95, 49-56.	5.8	24
24	ldentification of growth stage molecular markers in Trichoderma sp. â€~atroviride type B' and their potential application in monitoring fungal growth and development in soil. Microbiology (United) Tj ETQq0 0 () rgB 1.¦O ver	loc k 10 Tf 50
25	Trichoderma atroviride LU132 promotes plant growth but not induced systemic resistance to Plutella xylostella in oilseed rape. BioControl, 2014, 59, 241-252.	2.0	36
26	Asexual development in Trichoderma: from conidia to chlamydospores , 2013, , 87-109.		3
27	An injury-response mechanism conserved across kingdoms determines entry of the fungus <i>Trichoderma atroviride</i> into development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14918-14923.	7.1	99
28	Sho1 and Msb2-Related Proteins Regulate Appressorium Development in the Smut Fungus <i>Ustilago maydis</i> Â Â. Plant Cell, 2010, 22, 2085-2101.	6.6	120
29	Pathogenicity Determinants in Smut Fungi Revealed by Genome Comparison. Science, 2010, 330, 1546-1548.	12.6	301
30	Reproduction without sex: conidiation in the filamentous fungus Trichoderma. Microbiology (United) Tj ETQq() 0 0 rgBT /C	Overlock 10 T 72
31	Physicalâ€chemical plantâ€derived signals induce differentiation in <i>Ustilago maydis</i> . Molecular Microbiology, 2009, 71, 895-911.	2.5	120
32	Hap2 regulates the pheromone response transcription factor <i>prf1</i> in <i>Ustilago maydis</i> . Molecular Microbiology, 2009, 72, 683-698.	2.5	27
33	The dual specificity phosphatase Rok1 negatively regulates mating and pathogenicity in <i>Ustilago maydis</i> . Molecular Microbiology, 2009, 73, 73-88.	2.5	35
34	<i>Ustilago maydis</i> as a Pathogen. Annual Review of Phytopathology, 2009, 47, 423-445.	7.8	314
35	The MAP kinase TVK1 regulates conidiation, hydrophobicity and the expression of genes encoding cell wall proteins in the fungus Trichoderma virens. Microbiology (United Kingdom), 2007, 153, 2137-2147.	1.8	34
36	Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 2006, 444,	27.8	1,113

97-101.

#	Article	IF	CITATIONS
37	Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15965-15970.	7.1	128
38	Multiple environmental signals determine the transcriptional activation of the mycoparasitism related gene prb1 in Trichoderma atroviride. Molecular Genetics and Genomics, 2002, 267, 703-712.	2.1	54
39	Intracellular Calcium and α1b-Adrenoceptor Phosphorylation. Archives of Medical Research, 1999, 30, 353-357.	3.3	1
40	Crosstalk: phosphorylation of α1b-adrenoceptors induced through activation of bradykinin B2 receptors. FEBS Letters, 1998, 422, 141-145.	2.8	28
41	Chloroquine inhibits α1B-adrenergic action in hepatocytes. European Journal of Pharmacology, 1998, 342, 333-338.	3.5	1
42	Histidine Kinase Two-Component Response Regulators Ssk1, Skn7 and Rim15 Differentially Control Growth, Developmental and Volatile Organic Compounds Emissions as Stress Responses in Trichoderma Atroviride. SSRN Electronic Journal, 0, , .	0.4	0