
Diego Velasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3128558/publications.pdf Version: 2024-02-01

DIECO VELASCO

#	Article	IF	CITATIONS
1	Magneto-mechanical system to reproduce and quantify complex strain patterns in biological materials. Applied Materials Today, 2022, 27, 101437.	4.3	18
2	Preparation and Characterization of Plasma-Derived Fibrin Hydrogels Modified by Alginate di-Aldehyde. International Journal of Molecular Sciences, 2022, 23, 4296.	4.1	11
3	Evaluation of different methodologies for primary human dermal fibroblast spheroid formation: automation through 3D bioprinting technology. Biomedical Materials (Bristol), 2022, 17, 055002.	3.3	1
4	Contraction of fibrinâ€derived matrices and its implications for in vitro human skin bioengineering. Journal of Biomedical Materials Research - Part A, 2021, 109, 500-514.	4.0	22
5	Generation of a Simplified Three-Dimensional Skin-on-a-chip Model in a Micromachined Microfluidic Platform. Journal of Visualized Experiments, 2021, , .	0.3	5
6	Effect of Fibrin Concentration on the In Vitro Production of Dermo-Epidermal Equivalents. International Journal of Molecular Sciences, 2021, 22, 6746.	4.1	12
7	Elastin-Plasma Hybrid Hydrogels for Skin Tissue Engineering. Polymers, 2021, 13, 2114.	4.5	18
8	Influence of elastomeric matrix and particle volume fraction on the mechanical response of magneto-active polymers. Composites Part B: Engineering, 2021, 215, 108796.	12.0	30
9	A new microfluidic method enabling the generation of multi-layered tissues-on-chips using skin cells as a proof of concept. Scientific Reports, 2021, 11, 13160.	3.3	15
10	Cardiac Extracellular Matrix Hydrogel Enriched with Polyethylene Glycol Presents Improved Gelation Time and Increased On-Target Site Retention of Extracellular Vesicles. International Journal of Molecular Sciences, 2021, 22, 9226.	4.1	9
11	Skin-on-a-chip models: General overview and future perspectives. APL Bioengineering, 2021, 5, 030901.	6.2	48
12	Hyaluronic acid-fibrin hydrogels show improved mechanical stability in dermo-epidermal skin substitutes. Materials Science and Engineering C, 2021, 128, 112352.	7.3	18
13	Tuning the Cell and Biological Tissue Environment through Magneto-Active Materials. Applied Sciences (Switzerland), 2021, 11, 8746.	2.5	5
14	Lidocaine-Loaded Solid Lipid Microparticles (SLMPs) Produced from Gas-Saturated Solutions for Wound Applications. Pharmaceutics, 2020, 12, 870.	4.5	19
15	Bioprinting for Skin. Methods in Molecular Biology, 2020, 2140, 217-228.	0.9	10
16	Skin tissue engineering. , 2019, , 59-99.		15
17	Smart Polymer Gels: Properties, Synthesis, and Applications. , 2019, , 279-321.		6
18	The role of versican in the skin ECM and its interaction with hyaluronic acid. Biomecánica, 2019, 27, .	0.1	2

DIEGO VELASCO

#	Article	IF	CITATIONS
19	3D human skin bioprinting: a view from the bio side. Journal of 3D Printing in Medicine, 2018, 2, 141-162.	2.0	22
20	3D bioprinting of functional human skin: production and <i>in vivo</i> analysis. Biofabrication, 2017, 9, 015006.	7.1	329
21	Synergistic effect of pendant hydroxypropyl and pyrrolidine moieties randomly distributed along polymethacrylamide backbones on in vitro DNA-transfection. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 90, 38-43.	4.3	6
22	Poly (lactic-co-glycolic acid) particles prepared by microfluidics and conventional methods. Modulated particle size and rheology. Journal of Colloid and Interface Science, 2015, 441, 90-97.	9.4	37
23	Chitosan microgels obtained by on-chip crosslinking reaction employing a microfluidic device. Optofluidics, Microfluidics and Nanofluidics, 2014, 1, .	0.5	2
24	Chitosan/agarose hydrogels: Cooperative properties and microfluidic preparation. Carbohydrate Polymers, 2014, 111, 348-355.	10.2	80
25	Microfluidic Generation of Composite Biopolymer Microgels with Tunable Compositions and Mechanical Properties. Biomacromolecules, 2014, 15, 2419-2425.	5.4	36
26	Nanofibrillar thermoreversible micellar microgels. Soft Matter, 2013, 9, 2380.	2.7	18
27	Exploring a direct injection method for microfluidic generation of polymer microgels. Lab on A Chip, 2013, 13, 2547.	6.0	18
28	Synthesis and characterization of a novel thermoresponsive copolymer series and their application in cell and cell sheet regeneration. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 253-268.	3.5	14
29	Low polydispersity (N-ethyl pyrrolidine methacrylamide-co-1-vinylimidazole) linear oligomers for gene therapy applications. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 465-474.	4.3	14
30	Microfluidic Encapsulation of Cells in Polymer Microgels. Small, 2012, 8, 1633-1642.	10.0	231
31	End functionalized polymeric system derived from pyrrolidine provide high transfection efficiency. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 485-494.	4.3	13
32	pH-sensitive polymer hydrogels derived from morpholine to prevent the crystallization of ibuprofen. Journal of Controlled Release, 2011, 149, 140-145.	9.9	46
33	Preparation in supercritical CO2 of porous poly(methyl methacrylate)–poly(l-lactic acid) (PMMA–PLA) scaffolds incorporating ibuprofen. Journal of Supercritical Fluids, 2010, 54, 335-341.	3.2	51
34	Connections between structure and performance of four cationic copolymers used as physically adsorbed coatings in capillary electrophoresis. Journal of Chromatography A, 2010, 1217, 7586-7592.	3.7	11
35	A highly effective gene delivery vector – hyperbranched poly(2-(dimethylamino)ethyl methacrylate) from in situ deactivation enhanced ATRP. Chemical Communications, 2010, 46, 4698.	4.1	86
36	Poly(<i>N,N</i> â€dimethylacrylamideâ€ <i>co</i> â€4â€(ethyl)â€morpholine methacrylamide) copolymer as coa for CE. Journal of Separation Science, 2009, 32, 605-612.	ting 2.5	19

DIEGO VELASCO

#	Article	IF	CITATIONS
37	New stimuli-responsive polymers derived from morpholine and pyrrolidine. Journal of Materials Science: Materials in Medicine, 2008, 19, 1453-1458.	3.6	28
38	Nuevos polÃmeros acrÃlicos sensibles a estÃmulos derivados de la morfolina y pirrolidina. Biomec¡nica, 2008, , .	0.1	0
39	Development of a hyaluronic acid/plasma-derived fibrin hydrogel for the optimization of dermo-epidermal autologous equivalents. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	1