
Diego Velasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3128558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D bioprinting of functional human skin: production and <i>in vivo</i> analysis. Biofabrication, 2017, 9, 015006.	7.1	329
2	Microfluidic Encapsulation of Cells in Polymer Microgels. Small, 2012, 8, 1633-1642.	10.0	231
3	A highly effective gene delivery vector – hyperbranched poly(2-(dimethylamino)ethyl methacrylate) from in situ deactivation enhanced ATRP. Chemical Communications, 2010, 46, 4698.	4.1	86
4	Chitosan/agarose hydrogels: Cooperative properties and microfluidic preparation. Carbohydrate Polymers, 2014, 111, 348-355.	10.2	80
5	Preparation in supercritical CO2 of porous poly(methyl methacrylate)–poly(l-lactic acid) (PMMA–PLA) scaffolds incorporating ibuprofen. Journal of Supercritical Fluids, 2010, 54, 335-341.	3.2	51
6	Skin-on-a-chip models: General overview and future perspectives. APL Bioengineering, 2021, 5, 030901.	6.2	48
7	pH-sensitive polymer hydrogels derived from morpholine to prevent the crystallization of ibuprofen. Journal of Controlled Release, 2011, 149, 140-145.	9.9	46
8	Poly (lactic-co-glycolic acid) particles prepared by microfluidics and conventional methods. Modulated particle size and rheology. Journal of Colloid and Interface Science, 2015, 441, 90-97.	9.4	37
9	Microfluidic Generation of Composite Biopolymer Microgels with Tunable Compositions and Mechanical Properties. Biomacromolecules, 2014, 15, 2419-2425.	5.4	36
10	Influence of elastomeric matrix and particle volume fraction on the mechanical response of magneto-active polymers. Composites Part B: Engineering, 2021, 215, 108796.	12.0	30
11	New stimuli-responsive polymers derived from morpholine and pyrrolidine. Journal of Materials Science: Materials in Medicine, 2008, 19, 1453-1458.	3.6	28
12	3D human skin bioprinting: a view from the bio side. Journal of 3D Printing in Medicine, 2018, 2, 141-162.	2.0	22
13	Contraction of fibrinâ€derived matrices and its implications for in vitro human skin bioengineering. Journal of Biomedical Materials Research - Part A, 2021, 109, 500-514.	4.0	22
14	Poly(<i>N,N</i> â€dimethylacrylamideâ€ <i>co</i> â€4â€(ethyl)â€morpholine methacrylamide) copolymer as coati for CE. Journal of Separation Science, 2009, 32, 605-612.	ng 2.5	19
15	Lidocaine-Loaded Solid Lipid Microparticles (SLMPs) Produced from Gas-Saturated Solutions for Wound Applications. Pharmaceutics, 2020, 12, 870.	4.5	19
16	Nanofibrillar thermoreversible micellar microgels. Soft Matter, 2013, 9, 2380.	2.7	18
17	Exploring a direct injection method for microfluidic generation of polymer microgels. Lab on A Chip, 2013, 13, 2547.	6.0	18
18	Elastin-Plasma Hybrid Hydrogels for Skin Tissue Engineering. Polymers, 2021, 13, 2114.	4.5	18

DIEGO VELASCO

#	Article	IF	CITATIONS
19	Hyaluronic acid-fibrin hydrogels show improved mechanical stability in dermo-epidermal skin substitutes. Materials Science and Engineering C, 2021, 128, 112352.	7.3	18
20	Magneto-mechanical system to reproduce and quantify complex strain patterns in biological materials. Applied Materials Today, 2022, 27, 101437.	4.3	18
21	Skin tissue engineering. , 2019, , 59-99.		15
22	A new microfluidic method enabling the generation of multi-layered tissues-on-chips using skin cells as a proof of concept. Scientific Reports, 2021, 11, 13160.	3.3	15
23	Low polydispersity (N-ethyl pyrrolidine methacrylamide-co-1-vinylimidazole) linear oligomers for gene therapy applications. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 465-474.	4.3	14
24	Synthesis and characterization of a novel thermoresponsive copolymer series and their application in cell and cell sheet regeneration. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 253-268.	3.5	14
25	End functionalized polymeric system derived from pyrrolidine provide high transfection efficiency. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 485-494.	4.3	13
26	Effect of Fibrin Concentration on the In Vitro Production of Dermo-Epidermal Equivalents. International Journal of Molecular Sciences, 2021, 22, 6746.	4.1	12
27	Connections between structure and performance of four cationic copolymers used as physically adsorbed coatings in capillary electrophoresis. Journal of Chromatography A, 2010, 1217, 7586-7592.	3.7	11
28	Preparation and Characterization of Plasma-Derived Fibrin Hydrogels Modified by Alginate di-Aldehyde. International Journal of Molecular Sciences, 2022, 23, 4296.	4.1	11
29	Bioprinting for Skin. Methods in Molecular Biology, 2020, 2140, 217-228.	0.9	10
30	Cardiac Extracellular Matrix Hydrogel Enriched with Polyethylene Glycol Presents Improved Gelation Time and Increased On-Target Site Retention of Extracellular Vesicles. International Journal of Molecular Sciences, 2021, 22, 9226.	4.1	9
31	Synergistic effect of pendant hydroxypropyl and pyrrolidine moieties randomly distributed along polymethacrylamide backbones on in vitro DNA-transfection. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 90, 38-43.	4.3	6
32	Smart Polymer Gels: Properties, Synthesis, and Applications. , 2019, , 279-321.		6
33	Generation of a Simplified Three-Dimensional Skin-on-a-chip Model in a Micromachined Microfluidic Platform. Journal of Visualized Experiments, 2021, , .	0.3	5
34	Tuning the Cell and Biological Tissue Environment through Magneto-Active Materials. Applied Sciences (Switzerland), 2021, 11, 8746.	2.5	5
35	Chitosan microgels obtained by on-chip crosslinking reaction employing a microfluidic device. Optofluidics, Microfluidics and Nanofluidics, 2014, 1, .	0.5	2
36	The role of versican in the skin ECM and its interaction with hyaluronic acid. BiomecÃ;nica, 2019, 27, .	0.1	2

#	Article	IF	CITATIONS
37	Development of a hyaluronic acid/plasma-derived fibrin hydrogel for the optimization of dermo-epidermal autologous equivalents. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	1
38	Evaluation of different methodologies for primary human dermal fibroblast spheroid formation: automation through 3D bioprinting technology. Biomedical Materials (Bristol), 2022, 17, 055002.	3.3	1
39	Nuevos polÃmeros acrÃlicos sensibles a estÃmulos derivados de la morfolina y pirrolidina. BiomecA¡nica, 2008, , .	0.1	Ο