Jörg C Tiller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3128516/publications.pdf Version: 2024-02-01

IÃORC C THIER

#	Article	IF	CITATIONS
1	Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles. Polymers, 2012, 4, 46-71.	4.5	618
2	Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chemical Communications, 2002, , 3018-3019.	4.1	329
3	Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnology and Bioengineering, 2002, 79, 465-471.	3.3	327
4	A Shapeâ€Adaptive, Antibacterialâ€Coating of Immobilized Quaternaryâ€Ammonium Compounds Tethered on Hyperbranched Polyurea and its Mechanism of Action. Advanced Functional Materials, 2014, 24, 346-355.	14.9	271
5	Increasing the Local Concentration of Drugs by Hydrogel Formation. Angewandte Chemie - International Edition, 2003, 42, 3072-3075.	13.8	218
6	Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics. Nature, 2017, 543, 407-410.	27.8	211
7	Amphiphilic Network as Nanoreactor for Enzymes in Organic Solvents. Nano Letters, 2005, 5, 45-48.	9.1	185
8	Contact-Active Antimicrobial Coatings Derived from Aqueous Suspensions. Angewandte Chemie - International Edition, 2006, 45, 6759-6762.	13.8	154
9	Insights into bactericidal action of surface-attached poly(vinyl-N-hexylpyridinium) chains. Biotechnology Letters, 2002, 24, 801-805.	2.2	135
10	Poly(oxazoline)s with Telechelic Antimicrobial Functions. Biomacromolecules, 2005, 6, 235-243.	5.4	126
11	Influence of Satellite Groups on Telechelic Antimicrobial Functions of Polyoxazolines. Macromolecular Bioscience, 2005, 5, 149-156.	4.1	109
12	Nanophase Separated Amphiphilic Conetwork Coatings and Membranes. Macromolecules, 2005, 38, 2431-2438.	4.8	104
13	Mechanistic Considerations on Contactâ€Active Antimicrobial Surfaces with Controlled Functional Group Densities. Macromolecular Bioscience, 2011, 11, 526-534.	4.1	103
14	Shapeâ€Memory Natural Rubber: An Exceptional Material for Strain and Energy Storage. Macromolecular Chemistry and Physics, 2013, 214, 912-923.	2.2	97
15	Antimicrobial Poly(2â€methyloxazoline)s with Bioswitchable Activity through Satellite Group Modification. Angewandte Chemie - International Edition, 2014, 53, 3830-3834.	13.8	96
16	Insights in the Antibacterial Action of Poly(methyloxazoline)s with a Biocidal End Group and Varying Satellite Groups. Biomacromolecules, 2008, 9, 1764-1771.	5.4	92
17	Solvent-Sensitive Reversible Stress-Response of Shape Memory Natural Rubber. ACS Applied Materials & Interfaces, 2013, 5, 3504-3507.	8.0	86
18	Synthesis and Characterization of Anionic Amphiphilic Model Conetworks of 2-Butyl-1-Octyl-Methacrylate and Methacrylic Acid:  Effects of Polymer Composition and Architecture. Langmuir, 2007, 23, 10746-10755.	3.5	74

#	Article	IF	CITATIONS
19	Conjugation of Ciprofloxacin with Poly(2-oxazoline)s and Polyethylene Glycol via End Groups. Bioconjugate Chemistry, 2015, 26, 1950-1962.	3.6	69
20	Improving biomaterial properties of collagen films by chemical modification. Biotechnology and Bioengineering, 2001, 73, 246-252.	3.3	68
21	Antimicrobial Surfaces. Advances in Polymer Science, 2010, , 193-217.	0.8	63
22	Metallized Organoclays as New Intermediates for Aqueous Nanohybrid Dispersions, Nanohybrid Catalysts and Antimicrobial Polymer Hybrid Nanocomposites. Macromolecular Materials and Engineering, 2005, 290, 875-883.	3.6	62
23	Stressâ€Induced Melting of Crystals in Natural Rubber: a New Way to Tailor the Transition Temperature of Shape Memory Polymers. Macromolecular Rapid Communications, 2012, 33, 1517-1522.	3.9	61
24	Tunable Multipleâ€Shape Memory Polyethylene Blends. Macromolecular Chemistry and Physics, 2013, 214, 2725-2732.	2.2	61
25	Nanophase-Separated Amphiphilic Conetworks as Versatile Matrixes for Optical Chemical and Biochemical Sensors. Analytical Chemistry, 2006, 78, 6376-6383.	6.5	59
26	Optical biochemical sensor for determining hydroperoxides in nonpolar organic liquids as archetype for sensors consisting of amphiphilic conetworks as immobilisation matrices. Analytical and Bioanalytical Chemistry, 2006, 386, 1273-1283.	3.7	59
27	Synthesis and characterization of chiral and thermo responsive amphiphilic conetworks. Polymer, 2010, 51, 35-45.	3.8	59
28	Amphiphilic conetworks as activating carriers for the enhancement of enzymatic activity in supercritical CO ₂ . Biotechnology and Bioengineering, 2008, 101, 19-26.	3.3	58
29	Stabilization of Activity of Oxidoreductases by Their Immobilization onto Special Functionalized Glass and Novel Aminocellulose Film Using Different Coupling Reagents. Biomacromolecules, 2002, 3, 1021-1029.	5.4	57
30	Nanophasic Amphiphilic Conetworks with a Fluorophilic Phase. Macromolecules, 2006, 39, 4386-4394.	4.8	57
31	Amphiphilic polymer conetworks as chiral separation membranes. Journal of Membrane Science, 2011, 372, 219-227.	8.2	57
32	Amphiphilic polymer conetworks derived from aqueous solutions for biocatalysis in organic solvents. Polymer, 2012, 53, 701-707.	3.8	57
33	Stressâ€Induced Stabilization of Crystals in Shape Memory Natural Rubber. Macromolecular Rapid Communications, 2013, 34, 180-184.	3.9	57
34	Near-Model Amphiphilic Polymer Conetworks Based on Four-Arm Stars of Poly(vinylidene fluoride) and Poly(ethylene glycol): Synthesis and Characterization. Macromolecules, 2018, 51, 2476-2488.	4.8	57
35	Nanophase Separated Amphiphilic Microbeads. Macromolecules, 2005, 38, 7536-7539.	4.8	56
36	Nontoxic, Hydrophilic Cationic Polymers—Identified as Class of Antimicrobial Polymers. Macromolecular Bioscience, 2015, 15, 1710-1723.	4.1	56

#	Article	IF	CITATIONS
37	Contactâ€Active Antimicrobial and Potentially Selfâ€Polishing Coatings Based on Cellulose. Macromolecular Bioscience, 2011, 11, 111-121.	4.1	55
38	Long-term active antimicrobial coatings for surgical sutures based on silver nanoparticles and hyperbranched polylysine. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1589-1600.	3.5	54
39	A Coating that Combines Lotusâ€Effect and Contactâ€Active Antimicrobial Properties on Silicone. Advanced Functional Materials, 2018, 28, 1801248.	14.9	53
40	Amphiphilic Polymer Conetworks Based on End Group Cross-Linked Poly(2-oxazoline) Homo- and Triblock Copolymers. Macromolecules, 2013, 46, 3234-3245.	4.8	50
41	Amphiphilic Polymer Conetworks Based on End-Linked "Core-First―Star Block Copolymers: Structure Formation with Long-Range Order. ACS Macro Letters, 2015, 4, 1163-1168.	4.8	50
42	Impact of Functional Satellite Groups on the Antimicrobial Activity and Hemocompatibility of Telechelic Poly(2-methyloxazoline)s. Biomacromolecules, 2012, 13, 165-172.	5.4	49
43	Shape memory natural rubber. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1381-1388.	2.1	48
44	THz-Spectroscopy on High Density Polyethylene with Different Crystallinity. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 189-197.	2.2	48
45	Recoverable strain storage capacity of shape memory polyethylene. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1033-1040.	2.1	43
46	Investigations on diffusion limitations of biocatalyzed reactions in amphiphilic polymer conetworks in organic solvents. Biotechnology and Bioengineering, 2013, 110, 2333-2342.	3.3	43
47	Telechelic Poly(2-oxazoline)s with a Biocidal and a Polymerizable Terminal as Collagenase Inhibiting Additive for Long-Term Active Antimicrobial Dental Materials. Macromolecular Bioscience, 2014, 14, 1569-1579.	4.1	39
48	Amphiphilic polymer conetworks with defined nanostructure and tailored swelling behavior for exploring the activation of an entrapped lipase in organic solvents. Polymer, 2015, 64, 122-129.	3.8	39
49	Cross-Linking of a Hydrophilic, Antimicrobial Polycation toward a Fast-Swelling, Antimicrobial Superabsorber and Interpenetrating Hydrogel Networks with Long Lasting Antimicrobial Properties. ACS Applied Materials & Interfaces, 2017, 9, 36573-36582.	8.0	39
50	Poly(2-oxazoline)–Antibiotic Conjugates with Penicillins. Bioconjugate Chemistry, 2017, 28, 2440-2451.	3.6	39
51	Programming of Shape Memory Natural Rubber for Near-Discrete Shape Transitions. ACS Applied Materials & Interfaces, 2015, 7, 1486-1490.	8.0	38
52	Environmental Memory of Polymer Networks under Stress. Advanced Materials, 2014, 26, 3441-3444.	21.0	37
53	Urease-induced calcification of segmented polymer hydrogels – A step towards artificial biomineralization. Acta Biomaterialia, 2014, 10, 3942-3951.	8.3	37
54	Chemical Crossâ€linking of Polypropylenes Towards New Shape Memory Polymers. Macromolecular Rapid Communications, 2015, 36, 744-749.	3.9	37

#	Article	IF	CITATIONS
55	Ionically Cross-Linked Shape Memory Polypropylene. Macromolecules, 2016, 49, 6918-6927.	4.8	35
56	Investigations on the activity of poly(2-oxazoline) enzyme conjugates dissolved in organic solvents. Journal of Biotechnology, 2014, 181, 55-63.	3.8	34
57	Bimetallic silver–platinum nanoparticles with combined osteo-promotive and antimicrobial activity. Nanotechnology, 2019, 30, 305101.	2.6	34
58	Solidâ^'Solid Interface Adsorption of Proteins and Enzymes in Nanophase-Separated Amphiphilic Conetworks. Biomacromolecules, 2011, 12, 1594-1601.	5.4	33
59	Organosoluble enzyme conjugates with poly(2-oxazoline)s via pyromellitic acid dianhydride. Journal of Biotechnology, 2012, 159, 195-203.	3.8	31
60	Wellâ€Defined Amphiphilic Poly(2â€oxazoline) ABAâ€Triblock Copolymers and Their Aggregation Behavior in Aqueous Solution. Macromolecular Rapid Communications, 2012, 33, 1677-1682.	3.9	29
61	Polymer Enzyme Conjugates as Chiral Ligands for Sharpless Dihydroxylation of Alkenes in Organic Solvents. ChemBioChem, 2015, 16, 83-90.	2.6	28
62	Starâ€Shaped Poly(styrene)â€ <i>block</i> â€ <scp>P</scp> oly(4â€vinylâ€ <scp><i>N</i></scp> â€methylpyridiniumiodide) for Semipermanent Antimicrobial Coatings. Macromolecular Bioscience, 2013, 13, 1447-1455.	4.1	23
63	Shapeâ€Memory PVDF Exhibiting Switchable Piezoelectricity. Macromolecular Rapid Communications, 2015, 36, 2042-2046.	3.9	21
64	Heating Rate Sensitive Multi-Shape Memory Polypropylene: A Predictive Material. ACS Applied Materials & Interfaces, 2016, 8, 13684-13687.	8.0	21
65	Telechelic biocidal poly(2-oxazoline)s and polycations. European Polymer Journal, 2019, 120, 109233.	5.4	19
66	Enzyme-induced mineralization of hydrogels with amorphous calcium carbonate for fast synthesis of ultrastiff, strong and tough organic–inorganic double networks. Journal of Materials Science, 2021, 56, 15299-15312.	3.7	19
67	Fast-Acting Antibacterial, Self-Deactivating Polyionene Esters. ACS Applied Materials & amp; Interfaces, 2020, 12, 21201-21209.	8.0	18
68	Altering the Triggerâ€Behavior of Programmed Shape Memory Natural Rubber (SMNR) by Solvent Vapor. Macromolecular Materials and Engineering, 2015, 300, 25-30.	3.6	17
69	Entropically driven Polymeric Enzyme Inhibitors by Endâ€Group directed Conjugation. Chemistry - A European Journal, 2018, 24, 4523-4527.	3.3	17
70	Investigations on the thermoresponsive behavior of copoly(2-oxazoline)s in water. Polymer, 2019, 175, 294-301.	3.8	17
71	Improving the Strength of Ultrastiff Organic–Inorganic Double-Network Hydrogels. Chemistry of Materials, 0, , .	6.7	17
72	Postâ€Polymerization of Ureaseâ€Induced Calcified, Polymer Hydrogels. Macromolecular Rapid Communications, 2015, 36, 224-230.	3.9	16

#	Article	IF	CITATIONS
73	Investigations on "near perfect―poly(2-oxazoline) based amphiphilic polymer conetworks with a crystallizable block. European Polymer Journal, 2017, 88, 562-574.	5.4	16
74	Crosslinking of Semiaromatic Polyesters toward Highâ€Temperature Shape Memory Polymers with Full Recovery. Macromolecular Rapid Communications, 2018, 39, e1700768.	3.9	16
75	Ultrahighâ€Aspect Ratio Microfiberâ€Furs as Plantâ€Surface Mimics Derived from Teeth. Advanced Materials, 2011, 23, 3565-3569.	21.0	15
76	Ways of selective polycondensation of <scp>L</scp> â€lysine towards linear αâ€and εâ€polyâ€ <scp>L</scp> â€lysine. Journal of Polymer Science Part A, 2008, 46, 5053-5063.	2.3	14
77	Amphiphilic Conetworks Based on Endâ€Linked Multiblock Copolymers of Different Numbers of Blocks and Constant Molecular Weight and Composition. Macromolecular Chemistry and Physics, 2009, 210, 942-950.	2.2	14
78	Highly active and selective telechelic antimicrobial poly(2-oxazoline) copolymers. Polymer, 2017, 118, 107-115.	3.8	13
79	Forming amorphous calcium carbonate within hydrogels by enzyme-induced mineralization in the presence of N-(phosphonomethyl)glycine. Journal of Colloid and Interface Science, 2020, 579, 357-368.	9.4	13
80	Conjugates of Ciprofloxacin and Amphiphilic Block Copoly(2-alkyl-2-oxazolines)s Overcome Efflux Pumps and Are Active against CIP-Resistant Bacteria. Molecular Pharmaceutics, 2021, 18, 3532-3543.	4.6	13
81	Conventional and microwave-assisted synthesis of hyperbranched and highly branched polylysine towards amphiphilic core–shell nanocontainers for metal nanoparticles. Polymer, 2012, 53, 4623-4630.	3.8	12
82	Thermoâ€∤moistureâ€responsive shapeâ€memory effect of poly(2â€ethylâ€2â€oxazoline) networks. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1053-1061.	2.1	12
83	Amphiphilic Polymer Conetworks as Matrices for Phase Transfer Reactions. Macromolecular Symposia, 2010, 291-292, 293-301.	0.7	10
84	Impact of the configuration of a chiral, activating carrier on the enantioselectivity of entrapped lipase from Candida rugosa in cyclohexane. Biotechnology Letters, 2014, 36, 1661-1667.	2.2	10
85	Insights into the Kinetics of the Resistance Formation of Bacteria against Ciprofloxacin Poly(2-methyl-2-oxazoline) Conjugates. Bioconjugate Chemistry, 2018, 29, 2671-2678.	3.6	10
86	Poly(2â€oxazoline)s terminated with 2,2′â€imino diacetic acid form noncovalent polymer–enzyme conjugates that are highly active in organic solvents. Biotechnology and Bioengineering, 2019, 116, 272-282.	3.3	10
87	Tensile Creep Measurements of Glassy VOC-Loaded Polymers. Macromolecules, 2010, 43, 8997-9003.	4.8	9
88	Optimization of and Mechanistic Considerations for the Enantioselective Dihydroxylation of Styrene Catalyzed by Osmate‣accaseâ€Poly(2â€Methyloxazoline) in Organic Solvents. ChemCatChem, 2016, 8, 593-599.	3.7	9
89	Poly($2\hat{a}\in e$ thyloxazoline) as matrix for highly active electrospun enzymes in organic solvents. Biotechnology and Bioengineering, 2017, 114, 39-45.	3.3	9
90	Silver-Based Antimicrobial Coatings. ACS Symposium Series, 2006, , 215-231.	0.5	8

#	Article	IF	CITATIONS
91	Telechelic, Antimicrobial Hydrophilic Polycations with Two Modes of Action. Macromolecular Bioscience, 2018, 18, e1700389.	4.1	8
92	Enhanced dissolution of silver nanoparticles in a physical mixture with platinum nanoparticles based on the sacrificial anode effect. Nanotechnology, 2020, 31, 055703.	2.6	8
93	Multicore Artificial Metalloenzymes Derived from Acylated Proteins as Catalysts for the Enantioselective Dihydroxylation and Epoxidation of Styrene Derivatives. Chemistry - A European Journal, 2018, 24, 10859-10867.	3.3	7
94	Investigation of the swelling behavior of hydrogels derived from highâ€molecularâ€weight poly(2â€ethylâ€2â€oxazoline). Journal of Polymer Science, 2020, 58, 747-755.	3.8	7
95	Biodegradable Poly(ester hydrazide)s via Enzymatic Polymerization. Macromolecular Rapid Communications, 2005, 26, 1330-1335.	3.9	6
96	Coatings for Prevention or Deactivation of Biological Contamination. , 2008, , 1013-1065.		6
97	Amphiphilic polymer conetworks with ideal and non-ideal swelling behavior demonstrated by small angle X-ray scattering. Polymer, 2022, 242, 124582.	3.8	6
98	VOC Sorption in Stretched Cross-Linked Natural Rubber. Industrial & Engineering Chemistry Research, 2016, 55, 7191-7200.	3.7	5
99	Multiaxial Reinforcement of Cross-Linked Isotactic Poly(propylene) upon Uniaxial Stretching. Macromolecular Materials and Engineering, 2017, 302, 1600308.	3.6	5
100	Poly(2â€oxazoline)s with a 2,2′â€Iminodiacetate End Group Inhibit and Stabilize Laccase. ChemBioChem, 2020, 21, 874-882.	2.6	5
101	Realizing a shape-memory effect for synthetic rubber (IR). Polymer, 2020, 203, 122788.	3.8	5
102	Insights in the Thermal Volume Transition of Poly(2â€oxazoline) Hydrogels. Macromolecular Chemistry and Physics, 2021, 222, 2100157.	2.2	5
103	Shape Memory Effect, Shock- and Energy-Absorption Capability of Critically Cross-Linked Syndiotactic Polypropylene. Materials Today: Proceedings, 2019, 16, 1531-1537.	1.8	3
104	Shock―and Energyâ€Absorption Capability of Coldâ€Programmable Shape Memory Polymers. Macromolecular Chemistry and Physics, 2019, 220, 1800274.	2.2	3
105	Full Thermal Switching of Enzymes by Thermoresponsive Poly(2â€oxazoline)â€Based Enzyme Inhibitors. Chemistry - A European Journal, 2020, 26, 13367-13371.	3.3	3
106	Smallâ€Angle Xâ€Ray Scattering Measurements on Amphiphilic Polymer Conetworks Swollen in Orthogonal Solvents. Macromolecular Chemistry and Physics, 2021, 222, 2000292.	2.2	3
107	Enzymeâ€Induced Ferrification of Hydrogels for Toughening of Functional Inorganic Compounds. Macromolecular Materials and Engineering, 2022, 307,	3.6	3
108	Structural Characterization of Glassy and Rubbery Model Anionic Amphiphilic Polymer Conetworks. ACS Symposium Series, 2008, , 286-302.	0.5	2

#	Article	IF	CITATIONS
109	Nanoarmored Enzymes for Organic Enzymology. Methods in Enzymology, 2017, 590, 413-444.	1.0	1
110	Tunable Swelling Kinetics of Shape-Memory Poly(2-Ethyl-2-Oxazoline)-Networks. Materials Today: Proceedings, 2019, 16, 1554-1559.	1.8	1
111	Ultrahydrophobic Surfaces: Ultrahighâ€Aspect Ratio Microfiberâ€Furs as Plantâ€Surface Mimics Derived from Teeth (Adv. Mater. 31/2011). Advanced Materials, 2011, 23, 3476-3476.	21.0	0