Hau-San Wong

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3128347/hau-san-wong-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

147
papers

2,531
citations

30
h-index

g-index

192
ext. papers

5.4
ext. citations

5.4
avg, IF

L-index

#	Paper	IF	Citations
147	GAN-based clustering solution generation and fusion of diffusion. <i>Systems Science and Control Engineering</i> , 2022 , 10, 24-42	2	Ο
146	Learning scene-adaptive pseudo annotations for pedestrian detection in semi-supervised scenarios. Knowledge-Based Systems, 2022 , 243, 108439	7.3	1
145	Attention regularized semi-supervised learning with class-ambiguous data for image classification. <i>Pattern Recognition</i> , 2022 , 129, 108727	7.7	
144	Unsupervised discriminative feature learning via finding a clustering-friendly embedding space. <i>Pattern Recognition</i> , 2022 , 129, 108768	7.7	5
143	Fast and Effective Active Clustering Ensemble Based on Density Peak. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 3593-3607	10.3	3
142	An Inception Convolutional Autoencoder Model for Chinese Healthcare Question Clustering. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 2019-2031	10.2	5
141	. IEEE Transactions on Multimedia, 2021 , 1-1	6.6	2
140	. IEEE Transactions on Multimedia, 2021 , 1-1	6.6	1
139	. IEEE Transactions on Multimedia, 2021 , 1-1	6.6	
138	Progressive Hybrid Classifier Ensemble for Imbalanced Data. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2021 , 1-15	7.3	2
137	DDAT: Dual domain adaptive translation for low-resolution face verification in the wild. <i>Pattern Recognition</i> , 2021 , 120, 108107	7.7	1
136	Knowledge Exchange Between Domain-Adversarial and Private Networks Improves Open Set Image Classification. <i>IEEE Transactions on Image Processing</i> , 2021 , 30, 5807-5818	8.7	1
135	Simplified unsupervised image translation for semantic segmentation adaptation. <i>Pattern Recognition</i> , 2020 , 105, 107343	7.7	16
134	Adaptive Regularized Semi-Supervised Clustering Ensemble. <i>IEEE Access</i> , 2020 , 8, 17926-17934	3.5	O
133	Generating Target Image-Label Pairs for Unsupervised Domain Adaptation. <i>IEEE Transactions on Image Processing</i> , 2020 , 29, 7997-8011	8.7	5
132	Asymmetric Graph-Guided Multitask Survival Analysis With Self-Paced Learning. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2020 , PP,	10.3	1
131	Regularizing Discriminative Capability of CGANs for Semi-Supervised Generative Learning 2020 ,		6

Model Adaptation: Unsupervised Domain Adaptation Without Source Data 2020,		37	
Transfer Clustering Ensemble Selection. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 2872-2885	10.2	10	
Multitask Feature Selection by Graph-Clustered Feature Sharing. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 74-86	10.2	9	
Hybrid Classifier Ensemble for Imbalanced Data. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2020 , 31, 1387-1400	10.3	21	
Exploiting Global Low-Rank Structure and Local Sparsity Nature for Tensor Completion. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 3898-3910	10.2	8	
Cooperative traffic signal control using Multi-step return and Off-policy Asynchronous Advantage Actor-Critic Graph algorithm. <i>Knowledge-Based Systems</i> , 2019 , 183, 104855	7-3	19	
Exploring Correlations Among Tasks, Clusters, and Features for Multitask Clustering. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2019 , 30, 355-368	10.3	13	
Semi-Supervised Human Detection via Region Proposal Networks Aided by Verification. <i>IEEE Transactions on Image Processing</i> , 2019 ,	8.7	7	
Semi-Supervised Pedestrian Instance Synthesis and Detection With Mutual Reinforcement 2019,		4	
Mutual Learning of Complementary Networks via Residual Correction for Improving Semi-Supervised Classification 2019 ,		13	
Adaptive Semi-Supervised Classifier Ensemble for High Dimensional Data Classification. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 366-379	10.2	31	
Hybrid Incremental Ensemble Learning for Noisy Real-World Data Classification. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 403-416	10.2	20	
Structured Penalized Logistic Regression for Gene Selection in Gene Expression Data Analysis. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2019 , 16, 312-321	3	9	
Multiobjective Semisupervised Classifier Ensemble. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 2280-2	29 <u>3</u> 0.2	14	
Semi-Supervised Deep Coupled Ensemble Learning with Classification Landmark Exploration. <i>IEEE Transactions on Image Processing</i> , 2019 ,	8.7	9	
. IEEE Transactions on Multimedia, 2018 , 20, 851-865	6.6	26	
. IEEE Transactions on Materineara, 2010, 20, 031 003			
Exploiting Target Data to Learn Deep Convolutional Networks for Scene-Adapted Human Detection. <i>IEEE Transactions on Image Processing</i> , 2018 , 27, 1418-1432	8.7	17	
	Transfer Clustering Ensemble Selection. IEEE Transactions on Cybernetics, 2020, 50, 2872-2885 Multitask Feature Selection by Graph-Clustered Feature Sharing. IEEE Transactions on Cybernetics, 2020, 50, 74-86 Hybrid Classifier Ensemble for Imbalanced Data. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 1387-1400 Exploiting Global Low-Rank Structure and Local Sparsity Nature for Tensor Completion. IEEE Transactions on Cybernetics, 2019, 49, 3898-3910 Cooperative traffic signal control using Multi-step return and Off-policy Asynchronous Advantage Actor-Critic Graph algorithm. Knowledge-Based Systems, 2019, 183, 104855 Exploring Correlations Among Tasks, Clusters, and Features for Multitask Clustering. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 355-368 Semi-Supervised Human Detection via Region Proposal Networks Aided by Verification. IEEE Transactions on Image Processing, 2019, Semi-Supervised Pedestrian Instance Synthesis and Detection With Mutual Reinforcement 2019, Mutual Learning of Complementary Networks via Residual Correction for Improving Semi-Supervised Classification 2019, Adaptive Semi-Supervised Classifier Ensemble for High Dimensional Data Classification. IEEE Transactions on Cybernetics, 2019, 49, 366-379 Hybrid Incremental Ensemble Learning for Noisy Real-World Data Classification. IEEE Transactions on Cybernetics, 2019, 49, 403-416 Structured Penalized Logistic Regression for Gene Selection in Gene Expression Data Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 312-321 Multiobjective Semisupervised Classifier Ensemble. IEEE Transactions on Cybernetics, 2019, 49, 2280-2	Transfer Clustering Ensemble Selection. IEEE Transactions on Cybernetics, 2020, 50, 2872-2885 Multitask Feature Selection by Graph-Clustered Feature Sharing. IEEE Transactions on Cybernetics, 2020, 50, 74-86 Hybrid Classifier Ensemble for Imbalanced Data. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 1387-1400 Exploiting Global Low-Rank Structure and Local Sparsity Nature for Tensor Completion. IEEE Transactions on Cybernetics, 2019, 49, 3898-3910 Cooperative traffic signal control using Multi-step return and Off-policy Asynchronous Advantage Actor-Critic Graph algorithm. Knowledge-Based Systems, 2019, 183, 104855 Exploring Correlations Among Tasks, Clusters, and Features for Multitask Clustering. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 355-368 Semi-Supervised Human Detection via Region Proposal Networks Aided by Verification. IEEE Transactions on Image Processing, 2019, Semi-Supervised Pedestrian Instance Synthesis and Detection With Mutual Reinforcement 2019, Mutual Learning of Complementary Networks via Residual Correction for Improving Semi-Supervised Classification 2019, Adaptive Semi-Supervised Classifier Ensemble for High Dimensional Data Classification. IEEE Transactions on Cybernetics, 2019, 49, 403-416 Structured Penalized Logistic Regression for Gene Selection in Gene Expression Data Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 312-321 Multiobjective Semisupervised Classifier Ensemble. IEEE Transactions on Cybernetics, 2019, 49, 2280-2293-0.2	Transfer Clustering Ensemble Selection. IEEE Transactions on Cybernetics, 2020, 50, 2872-2885 Multitask Feature Selection by Graph-Clustered Feature Sharing. IEEE Transactions on Cybernetics, 2020, 50, 74-86 Hybrid Classifier Ensemble for Imbalanced Data. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 1387-1400 Exploiting Global Low-Rank Structure and Local Sparsity Nature for Tensor Completion. IEEE Transactions on Cybernetics, 2019, 49, 3898-3910 Cooperative traffic signal control using Multi-step return and Off-policy Asynchronous Advantage Actor-Critic Graph algorithm. Knowledge-Based Systems, 2019, 183, 104855 Exploring Correlations Among Tasks, Clusters, and Features for Multitask Clustering. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 355-368 Semi-Supervised Human Detection via Region Proposal Networks Aided by Verification. IEEE Transactions on Image Processing, 2019. Semi-Supervised Pedestrian Instance Synthesis and Detection With Mutual Reinforcement 2019. Adaptive Semi-Supervised Classification 2019. Adaptive Semi-Supervised Classification 2019. Adaptive Semi-Supervised Classification 2019. Hybrid Incremental Ensemble Learning for Noisy Real-World Data Classification. IEEE Transactions on Cybernetics, 2019, 49, 403-416 Structured Penalized Logistic Regression for Gene Selection in Gene Expression Data Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 312-321 Multiobjective Semisupervised Classifier Ensemble Learning with Classification Landmark Exploration. IEEE Semi-Supervised Deep Coupled Ensemble Learning with Classification Landmark Exploration. IEEE

112	Clustering by Local Gravitation. IEEE Transactions on Cybernetics, 2018, 48, 1383-1396	10.2	33
111	Progressive Semisupervised Learning of Multiple Classifiers. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 689-702	10.2	30
110	Variant SemiBoost for Improving Human Detection in Application Scenes. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2018 , 28, 1595-1608	6.4	10
109	Adaptive activation functions in convolutional neural networks. <i>Neurocomputing</i> , 2018 , 272, 204-212	5.4	67
108	Corpus-based topic diffusion for short text clustering. <i>Neurocomputing</i> , 2018 , 275, 2444-2458	5.4	23
107	Distribution-Based Cluster Structure Selection. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 3554-3567	10.2	37
106	Adaptive Ensembling of Semi-Supervised Clustering Solutions. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2017 , 29, 1577-1590	4.2	30
105	Generalized Pair-Counting Similarity Measures for Clustering and Cluster Ensembles. <i>IEEE Access</i> , 2017 , 5, 16904-16918	3.5	19
104	A New Kind of Nonparametric Test for Statistical Comparison of Multiple Classifiers Over Multiple Datasets. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 4418-4431	10.2	31
103	Locality-Sensitive Term Weighting for Short Text Clustering. <i>Lecture Notes in Computer Science</i> , 2017 , 434-444	0.9	2
102	Learning with Partially Shared Features for Multi-Task Learning. <i>Lecture Notes in Computer Science</i> , 2017 , 95-104	0.9	
101	A Comparison Study for DNA Motif Modeling on Protein Binding Microarray. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2016 , 13, 261-71	3	9
100	Progressive subspace ensemble learning. Pattern Recognition, 2016, 60, 692-705	7.7	30
99	Incremental Semi-Supervised Clustering Ensemble for High Dimensional Data Clustering. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2016 , 28, 701-714	4.2	114
98	A weighted local view method based on observation over ground truth for community detection. <i>Information Sciences</i> , 2016 , 355-356, 37-57	7.7	12
97	Incremental semi-supervised clustering ensemble for high dimensional data clustering 2016,		2
96	Robust Epileptic Seizure Classification. <i>Lecture Notes in Computer Science</i> , 2016 , 363-373	0.9	1
95	An adaptive approach for texture enhancement based on a fractional differential operator with non-integer step and order. <i>Neurocomputing</i> , 2015 , 158, 295-306	5.4	16

(2012-2015)

94	Cardiomyocytes Reveals Pathways Crucial for Cardiac Metabolism and Maturation. <i>Circulation:</i> Cardiovascular Genetics, 2015 , 8, 427-36		29
93	Adaptive Fuzzy Consensus Clustering Framework for Clustering Analysis of Cancer Data. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2015 , 12, 887-901	3	39
92	Consensus comparative analysis of human embryonic stem cell-derived cardiomyocytes. <i>PLoS ONE</i> , 2015 , 10, e0125442	3.7	
91	Gene set enrichment ensemble using fold change data only. <i>Journal of Biomedical Informatics</i> , 2015 , 57, 189-203	10.2	O
90	Iterative Term Weighting for Short Text Data 2015 ,		2
89	Introduction to the Peptide Binding Problem of Computational Immunology: New Results. <i>Foundations of Computational Mathematics</i> , 2014 , 14, 951-984	2.7	13
88	Probabilistic cluster structure ensemble. <i>Information Sciences</i> , 2014 , 267, 16-34	7.7	22
87	Double Selection Based Semi-Supervised Clustering Ensemble for Tumor Clustering from Gene Expression Profiles. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2014 , 11, 727-4	1ð	45
86	A Bayesian Model for Crowd Escape Behavior Detection. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2014 , 24, 85-98	6.4	64
85	Characterisation of semantic similarity on gene ontology based on a shortest path approach. <i>International Journal of Data Mining and Bioinformatics</i> , 2014 , 10, 33-48	0.5	4
84	AORS: Affinity-based outlier ranking score 2014 ,		2
83	MHC binding prediction with KernelRLSpan and its variations. <i>Journal of Immunological Methods</i> , 2014 , 406, 10-20	2.5	8
82	Hybrid clustering solution selection strategy. <i>Pattern Recognition</i> , 2014 , 47, 3362-3375	7.7	40
81	Characterization of carbon nanotube protein corona by using quantitative proteomics. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2013 , 9, 583-93	6	79
80	An effective and effecient peptide binding prediction approach for a broad set of HLA-DR molecules based on ordered weighted averaging of binding pocket profiles. <i>Proteome Science</i> , 2013 , 11, S15	2.6	8
79	RNA structural motif recognition based on least-squares distance. <i>Rna</i> , 2013 , 19, 1183-91	5.8	2
78	Transcriptome-guided functional analyses reveal novel biological properties and regulatory hierarchy of human embryonic stem cell-derived ventricular cardiomyocytes crucial for maturation. <i>PLoS ONE</i> , 2013 , 8, e77784	3.7	30
77	A fuzzy minimax clustering model and its applications. <i>Information Sciences</i> , 2012 , 186, 114-125	7.7	20

76	From cluster ensemble to structure ensemble. <i>Information Sciences</i> , 2012 , 198, 81-99	7.7	26
75	Visual query processing for efficient image retrieval using a SOM-based filter-refinement scheme. <i>Information Sciences</i> , 2012 , 203, 83-101	7.7	15
74	Hybrid cluster ensemble framework based on the random combination of data transformation operators. <i>Pattern Recognition</i> , 2012 , 45, 1826-1837	7.7	35
73	Generalized Adjusted Rand Indices for cluster ensembles. <i>Pattern Recognition</i> , 2012 , 45, 2214-2226	7.7	44
72	Joint segmentation of collectively moving objects using a bag-of-words model and level set evolution. <i>Pattern Recognition</i> , 2012 , 45, 3389-3401	7.7	8
71	SC(3): Triple spectral clustering-based consensus clustering framework for class discovery from cancer gene expression profiles. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2012 , 9, 1751-65	3	40
70	Representative distance: a new similarity measure for class discovery from gene expression data. <i>IEEE Transactions on Nanobioscience</i> , 2012 , 11, 341-51	3.4	13
69	Crowd motion partitioning in a scattered motion field. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2012 , 42, 1443-54		28
68	A new unsupervised feature ranking method for gene expression data based on consensus affinity. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2012 , 9, 1257-63	3	18
67	TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. <i>PLoS ONE</i> , 2012 , 7, e30483	3.7	74
66	Neighborhood Knowledge-Based Evolutionary Algorithm for Multiobjective Optimization Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2011 , 15, 812-831	15.6	16
65	A modified support vector machine and its application to image segmentation. <i>Image and Vision Computing</i> , 2011 , 29, 29-40	3.7	30
64	Feature-based 3D motif filtering for ribosomal RNA. <i>Bioinformatics</i> , 2011 , 27, 2828-35	7.2	2
63	A new method for measuring the semantic similarity on gene ontology 2010 ,		10
62	Identifying protein-kinase-specific phosphorylation sites based on the Bagging-AdaBoost ensemble approach. <i>IEEE Transactions on Nanobioscience</i> , 2010 , 9, 132-43	3.4	20
61	Hybrid associative retrieval of three-dimensional models. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2010 , 40, 1582-95		3
60	ARImp: A Generalized Adjusted Rand Index for Cluster Ensembles 2010 ,		16
59	Quantization-based clustering algorithm. <i>Pattern Recognition</i> , 2010 , 43, 2698-2711	7.7	9

(2007-2010)

58	ASM: An adaptive simplification method for 3D point-based models. <i>CAD Computer Aided Design</i> , 2010 , 42, 598-612	2.9	17
57	A Shape Derivative Based Approach for Crowd Flow Segmentation. <i>Lecture Notes in Computer Science</i> , 2010 , 93-102	0.9	2
56	A neural network-based biomarker association information extraction approach for cancer classification. <i>Journal of Biomedical Informatics</i> , 2009 , 42, 654-66	10.2	35
55	Logic optimality for multi-objective optimization. Applied Mathematics and Computation, 2009, 215, 30	45 <u>≻.3</u> 05	6 9
54	A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns. <i>Journal of Computational and Applied Mathematics</i> , 2009 , 233, 264-278	2.4	57
53	Class discovery from gene expression data based on perturbation and cluster ensemble. <i>IEEE Transactions on Nanobioscience</i> , 2009 , 8, 147-60	3.4	31
52	Fuzzy multi-objective portfolio selection model with transaction costs 2009,		8
51	Active constrained clustering with multiple cluster representatives 2009,		2
50	Crowd Flow Segmentation Using a Novel Region Growing Scheme. <i>Lecture Notes in Computer Science</i> , 2009 , 898-907	0.9	6
49	Constructing the gene regulation-level representation of microarray data for cancer classification. <i>Journal of Biomedical Informatics</i> , 2008 , 41, 95-105	10.2	13
48	Nearest neighbor evolutionary algorithm for constrained optimization problem 2008,		1
48	Nearest neighbor evolutionary algorithm for constrained optimization problem 2008, 2008,		1
47	2008,		1
47	2008, A Robust Moving Object Detection Approach 2008,		1
47 46 45	2008, A Robust Moving Object Detection Approach 2008, 3D motion sequence retrieval based on data distribution 2008,		1 2
47 46 45 44	2008, A Robust Moving Object Detection Approach 2008, 3D motion sequence retrieval based on data distribution 2008, Image classification based on the bagging-adaboost ensemble 2008,	7-7	1 1 2 1

40	Extracting gene regulation information for cancer classification. <i>Pattern Recognition</i> , 2007 , 40, 3379-3	39 7 .7	32
39	Face and palmprint feature level fusion for single sample biometrics recognition. <i>Neurocomputing</i> , 2007 , 70, 1582-1586	5.4	96
38	Hierarchical multi-classifier system design based on evolutionary computation technique. <i>Multimedia Tools and Applications</i> , 2007 , 33, 91-108	2.5	1
37	Kernel clustering-based discriminant analysis. <i>Pattern Recognition</i> , 2007 , 40, 324-327	7.7	30
36	Prediction of Protein-Protein Interacting Sites by Combining SVM Algorithm with Bayesian Method 2007 ,		1
35	Graph-based consensus clustering for class discovery from gene expression data. <i>Bioinformatics</i> , 2007 , 23, 2888-96	7.2	121
34	Prediction of protein B-factors using multi-class bounded SVM. <i>Protein and Peptide Letters</i> , 2007 , 14, 185-90	1.9	18
33	3D model representation using adaptive volumetric extended Gaussian image 2007,		2
32	. IEEE Transactions on Multimedia, 2007 , 9, 766-784	6.6	33
31	Labeling of Human Motion by Constraint-Based Genetic Algorithm. <i>Lecture Notes in Computer Science</i> , 2007 , 105-114	0.9	O
30	Image Segmentation Based on Cluster Ensemble. Lecture Notes in Computer Science, 2007, 894-903	0.9	3
29	A Filter-Refinement Scheme for 3D Model Retrieval Based on Sorted Extended Gaussian Image Histogram. <i>Lecture Notes in Computer Science</i> , 2007 , 643-652	0.9	1
28	3D Model Retrieval Based on Multi-Shell Extended Gaussian Image 2007 , 426-437		4
27	Face recognition based on discriminant fractional Fourier feature extraction. <i>Pattern Recognition Letters</i> , 2006 , 27, 1465-1471	4.7	27
26	3D model metrieval based on volumetric extended gaussian image and hierarchical self organizing map 2006 ,		4
25	Inferring protein-protein interacting sites using residue conservation and evolutionary information. <i>Protein and Peptide Letters</i> , 2006 , 13, 999-1005	1.9	30
24	FEMA: A Fast Expectation Maximization Algorithm based on Grid and PCA 2006,		4
23	An efficient local clustering approach for simplification of 3D point-based computer graphics models 2006 ,		2

22	Fast Gaussian Mixture Clustering for Skin Detection 2006 ,		4
21	Genetic-based K-means algorithm for selection of feature variables 2006 ,		2
20	Face recognition based on 2D Fisherface approach. <i>Pattern Recognition</i> , 2006 , 39, 707-710	7.7	65
19	2D clustering based discriminant analysis for 3D head model classification. <i>Pattern Recognition</i> , 2006 , 39, 491-494	7.7	3
18	A new partitioning neural network model for recursively finding arbitrary roots of higher order arbitrary polynomials. <i>Applied Mathematics and Computation</i> , 2005 , 162, 1183-1200	2.7	17
17	An uncorrelated fisherface approach. <i>Neurocomputing</i> , 2005 , 67, 328-334	5.4	3
16	Application of evolutionary strategies for 3D graphical model categorization and retrieval. <i>Multimedia Systems</i> , 2005 , 10, 422-431	2.2	
15	Transformation of Compressed Domain Features for Content-Based Image Indexing and Retrieval. <i>Multimedia Tools and Applications</i> , 2005 , 26, 5-26	2.5	2
14	Indexing and retrieval of 3D models by unsupervised clustering with hierarchical SOM 2004,		1
13	3D head model classification by evolutionary optimization of the Extended Gaussian Image representation. <i>Pattern Recognition</i> , 2004 , 37, 2307-2322	7.7	21
12	An evolutionary optimization approach for 3D human head model classification 2003,		1
11	Polyhedral Object Localization in an Image by Referencing to a Single Model View. <i>International Journal of Computer Vision</i> , 2003 , 51, 139-163	10.6	3
10	Dilation method for finding close roots of polynomials based on constrained learning neural networks. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2003 , 309, 443-451	2.3	46
9	Three-dimensional shape recovery across two views using approximate geometric constraints. <i>Optical Engineering</i> , 2003 , 42, 632	1.1	2
8	. IEEE Transactions on Multimedia, 2001 , 3, 186-199	6.6	37
7	A neural learning approach for adaptive image restoration using a fuzzy model-based network architecture. <i>IEEE Transactions on Neural Networks</i> , 2001 , 12, 516-31		33
6	A model-based neural network for edge characterization. <i>Pattern Recognition</i> , 2000 , 33, 427-444	7.7	8
5	Application of evolutionary programming to adaptive regularization in image restoration. <i>IEEE Transactions on Evolutionary Computation</i> , 2000 , 4, 309-326	15.6	7

4	Adaptive regularization in image restoration using a model-based neural network. <i>Optical Engineering</i> , 1997 , 36, 3297	1.1	9
3	Compressed domain feature transformation using evolutionary strategies for image classification		1
2			2
1	Improving Domain-Specific Classification by Collaborative Learning with Adaptation Networks. Proceedings of the AAAI Conference on Artificial Intelligence,33, 5450-5457	5	7