Roberto Palmieri

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3128188/roberto-palmieri-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

58	312	9	14
papers	citations	h-index	g-index
78	419	1.3	3.44
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
58	Taming the Contention in Consensus-based Distributed Systems. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2020 , 1-1	3.9	
57	Don't Forget About Synchronization! 2019 ,		6
56	Processing transactions in a predefined order 2019 ,		6
55	2019,		1
54	Lerna. ACM Transactions on Storage, 2019 , 15, 1-24	1	O
53	Lerna 2018 ,		1
52	HiperTM: High performance, fault-tolerant transactional memory. <i>Theoretical Computer Science</i> , 2017 , 688, 86-102	1.1	1
51	Managing Resource Limitation of Best-Effort HTM. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2017 , 28, 2299-2313	3.7	2
50	Speeding up Consensus by Chasing Fast Decisions 2017 ,		9
49	. IEEE Transactions on Parallel and Distributed Systems, 2017 , 28, 3600-3614	3.7	2
48	Automated Data Partitioning for Highly Scalable and Strongly Consistent Transactions. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2016 , 27, 106-118	3.7	12
47	Exploiting Parallelism of Distributed Nested Transactions 2016,		1
46	Leaderless Consensus: The State of the Art 2016 ,		2
45	Extending TM Primitives using Low Level Semantics 2016,		2
44	On Open Nesting in Distributed Transactional Memory. <i>IEEE Transactions on Computers</i> , 2016 , 65, 1856	-1:868	1
43	Remote Transaction Commit: Centralizing Software Transactional Memory Commits. <i>IEEE Transactions on Computers</i> , 2016 , 65, 2228-2240	2.5	1
42	Opacity vs TMS2: Expectations and Reality. <i>Lecture Notes in Computer Science</i> , 2016 , 269-283	0.9	2

(2014-2016)

41	On designing NUMA-aware concurrency control for scalable transactional memory. <i>ACM SIGPLAN Notices</i> , 2016 , 51, 1-2	0.2	
40	On designing NUMA-aware concurrency control for scalable transactional memory 2016 ,		1
39	Making Fast Consensus Generally Faster 2016 ,		17
38	On ordering transaction commit 2016 ,		2
37	Disjoint-Access Parallelism 2015 ,		4
36	On Scheduling Best-Effort HTM Transactions 2015 ,		2
35	Managing Resource Limitation of Best-Effort HTM 2015 ,		2
34	On Exploiting Locality for Generalized Consensus 2015,		1
33	On Reducing False Conflicts in Distributed Transactional Data Structures 2015 ,		1
32	Reducing Aborts in Distributed Transactional Systems through Dependency Detection 2015,		1
31	Transactional Interference-Less Balanced Tree. Lecture Notes in Computer Science, 2015, 325-340	0.9	2
30	Transaction Execution Models in Partially Replicated Transactional Memory: The Case for Data-Flow and Control-Flow. <i>Lecture Notes in Computer Science</i> , 2015 , 341-366	0.9	4
29	On Scheduling in Distributed Transactional Memory: Techniques and Tradeoffs 2015 , 1267-1283		
28	Cloud-TM 2015 , 749-781		
27	On speculative replication of transactional systems. <i>Journal of Computer and System Sciences</i> , 2014 , 80, 257-276	1	16
26	Speculative client execution in deferred update replication 2014,		2
25	Optimistic transactional boosting 2014 ,		7
24	Archie 2014 ,		18

23	Optimistic transactional boosting. ACM SIGPLAN Notices, 2014, 49, 387-388	0.2	8
22	Remote Invalidation: Optimizing the Critical Path of Memory Transactions 2014,		4
21	Adaptive Live Migration to Improve Load Balancing in Virtual Machine Environment. <i>Lecture Notes in Computer Science</i> , 2014 , 116-125	0.9	6
20	Distributed Transactional Contention Management as the Traveling Salesman Problem. <i>Lecture Notes in Computer Science</i> , 2014 , 54-67	0.9	8
19	On Developing Optimistic Transactional Lazy Set. Lecture Notes in Computer Science, 2014, 437-452	0.9	9
18	Be General and Donli Give Up Consistency in Geo-Replicated Transactional Systems. <i>Lecture Notes in Computer Science</i> , 2014 , 33-48	0.9	9
17	HiperTM: High Performance, Fault-Tolerant Transactional Memory. <i>Lecture Notes in Computer Science</i> , 2014 , 181-196	0.9	8
16	HyflowCPP: A Distributed Transactional Memory Framework for C++ 2013,		4
15	On the Viability of Speculative Transactional Replication in Database Systems: A Case Study with PostgreSQL 2013 ,		2
14	Hyflow2 2013 ,		12
14	Hyflow2 2013, Enhancing Concurrency in Distributed Transactional Memory through Commutativity. Lecture Notes in Computer Science, 2013, 150-161	0.9	12
	Enhancing Concurrency in Distributed Transactional Memory through Commutativity. <i>Lecture Notes</i>	0.9	
13	Enhancing Concurrency in Distributed Transactional Memory through Commutativity. <i>Lecture Notes in Computer Science</i> , 2013 , 150-161	0.9	
13	Enhancing Concurrency in Distributed Transactional Memory through Commutativity. <i>Lecture Notes in Computer Science</i> , 2013 , 150-161 Cloud-TM 2013 , 192-224 Scheduling Open-Nested Transactions in Distributed Transactional Memory. <i>Lecture Notes in</i>		6
13 12 11	Enhancing Concurrency in Distributed Transactional Memory through Commutativity. <i>Lecture Notes in Computer Science</i> , 2013 , 150-161 Cloud-TM 2013 , 192-224 Scheduling Open-Nested Transactions in Distributed Transactional Memory. <i>Lecture Notes in Computer Science</i> , 2013 , 105-120 ByteSTM: Virtual Machine-Level Java Software Transactional Memory. <i>Lecture Notes in Computer</i>	0.9	6
13 12 11	Enhancing Concurrency in Distributed Transactional Memory through Commutativity. Lecture Notes in Computer Science, 2013, 150-161 Cloud-TM 2013, 192-224 Scheduling Open-Nested Transactions in Distributed Transactional Memory. Lecture Notes in Computer Science, 2013, 105-120 ByteSTM: Virtual Machine-Level Java Software Transactional Memory. Lecture Notes in Computer Science, 2013, 166-180 On the analytical modeling of concurrency control algorithms for Software Transactional	0.9	6 0
13 12 11 10	Enhancing Concurrency in Distributed Transactional Memory through Commutativity. Lecture Notes in Computer Science, 2013, 150-161 Cloud-TM 2013, 192-224 Scheduling Open-Nested Transactions in Distributed Transactional Memory. Lecture Notes in Computer Science, 2013, 105-120 ByteSTM: Virtual Machine-Level Java Software Transactional Memory. Lecture Notes in Computer Science, 2013, 166-180 On the analytical modeling of concurrency control algorithms for Software Transactional Memories: The case of Commit-Time-Locking. Performance Evaluation, 2012, 69, 187-205	0.9	6 O 1

LIST OF PUBLICATIONS

5	OSARE: Opportunistic Speculation in Actively REplicated Transactional Systems 2011 ,	23
4	Analytical modeling of lock-based concurrency control with arbitrary transaction data access patterns 2010 ,	8
3	AGGRO: Boosting STM Replication via Aggressively Optimistic Transaction Processing 2010,	14
2	Evaluating database-oriented replication schemes in Software Transactional Memory systems 2010 ,	8
1	An Optimal Speculative Transactional Replication Protocol 2010 ,	5