
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3127812/publications.pdf Version: 2024-02-01

RIN 7HANC

#	Article	IF	CITATIONS
1	Electrochemistry and Electrochemiluminescence of Organometal Halide Perovskite Nanocrystals in Aqueous Medium. Journal of the American Chemical Society, 2017, 139, 8772-8776.	13.7	185
2	Design, Synthesis, Cytoselective Toxicity, Structure–Activity Relationships, and Pharmacophore of Thiazolidinone Derivatives Targeting Drug-Resistant Lung Cancer Cells. Journal of Medicinal Chemistry, 2008, 51, 1242-1251.	6.4	155
3	Protein Binding by Functionalized Multiwalled Carbon Nanotubes Is Governed by the Surface Chemistry of Both Parties and the Nanotube Diameter. Journal of Physical Chemistry C, 2008, 112, 3300-3307.	3.1	151
4	A Nano-Combinatorial Library Strategy for the Discovery of Nanotubes with Reduced Protein-Binding, Cytotoxicity, and Immune Response. Nano Letters, 2008, 8, 859-865.	9.1	130
5	Efficient and Monochromatic Electrochemiluminescence of Aqueousâ€Soluble Au Nanoclusters via Host–Guest Recognition. Angewandte Chemie - International Edition, 2019, 58, 6901-6905.	13.8	112
6	Regulation of Enzyme Activity through Interactions with Nanoparticles. International Journal of Molecular Sciences, 2009, 10, 4198-4209.	4.1	104
7	Analytical strategies for detecting nanoparticle–protein interactions. Analyst, The, 2010, 135, 1519.	3.5	102
8	Functionalized Carbon Nanotubes Specifically Bind to α-Chymotrypsin's Catalytic Site and Regulate Its Enzymatic Function. Nano Letters, 2009, 9, 2280-2284.	9.1	101
9	Nanoparticle-based strategies for detection and remediation of environmental pollutants. Analyst, The, 2011, 136, 872.	3.5	98
10	Near-Infrared Electrochemiluminescence Immunoassay with Biocompatible Au Nanoclusters as Tags. Analytical Chemistry, 2020, 92, 7581-7587.	6.5	82
11	Molecular-Counting-Free and Electrochemiluminescent Single-Molecule Immunoassay with Dual-Stabilizers-Capped CdSe Nanocrystals as Labels. Analytical Chemistry, 2016, 88, 5482-5488.	6.5	80
12	Electrochemical-Signal-Amplification Strategy for an Electrochemiluminescence Immunoassay with g-C ₃ N ₄ as Tags. Analytical Chemistry, 2018, 90, 12930-12936.	6.5	75
13	Spectrum-Based Electrochemiluminescent Immunoassay with Ternary CdZnSe Nanocrystals as Labels. Analytical Chemistry, 2016, 88, 6947-6953.	6.5	72
14	Suppression of Human Bone Morphogenetic Protein Signaling by Carboxylated Single-Walled Carbon Nanotubes. ACS Nano, 2009, 3, 1139-1144.	14.6	69
15	Analytical strategies for characterizing the surface chemistry of nanoparticles. Analytical and Bioanalytical Chemistry, 2010, 396, 973-982.	3.7	66
16	Promising Anodic Electrochemiluminescence of Nontoxic Core/Shell CuInS ₂ /ZnS Nanocrystals in Aqueous Medium and Its Biosensing Potential. Analytical Chemistry, 2018, 90, 3563-3569.	6.5	63
17	Advances in HPLC detection—towards universal detection. Analytical and Bioanalytical Chemistry, 2008, 390, 299-301.	3.7	59
18	Monochromatic and electrochemically switchable electrochemiluminescence of perovskite CsPbBr ₃ nanocrystals. Nanoscale, 2016, 8, 18734-18739.	5.6	58

#	Article	IF	CITATIONS
19	Spectrum-Resolved Triplex-Color Electrochemiluminescence Multiplexing Immunoassay with Highly-Passivated Nanocrystals as Tags. Analytical Chemistry, 2018, 90, 12361-12365.	6.5	57
20	Enabling Anticancer Therapeutics by Nanoparticle Carriers: The Delivery of Paclitaxel. International Journal of Molecular Sciences, 2011, 12, 4395-4413.	4.1	56
21	Characterization of Protein Clusters of Diverse Magnetic Nanoparticles and Their Dynamic Interactions with Human Cells. Journal of Physical Chemistry C, 2009, 113, 5390-5395.	3.1	51
22	Exploring the Immunotoxicity of Carbon Nanotubes. Nanoscale Research Letters, 2008, 3, 271-277.	5.7	48
23	Characterization of Organic Molecules Attached to Gold Nanoparticle Surface Using High Resolution Magic Angle Spinning ¹ H NMR. Journal of Physical Chemistry C, 2008, 112, 19360-19366.	3.1	43
24	Ultrasensitive Electrochemiluminescent Sensor for MicroRNA with Multinary Zn–Ag–In–S/ZnS Nanocrystals as Tags. Analytical Chemistry, 2019, 91, 3754-3758.	6.5	39
25	Experimental modulation and computational model of nano-hydrophobicity. Biomaterials, 2015, 52, 312-317.	11.4	37
26	Red-shifted electrochemiluminescence of CdTe nanocrystals via Co2+-Doping and its spectral sensing application in near-infrared region. Biosensors and Bioelectronics, 2020, 150, 111880.	10.1	36
27	Hydrogen Peroxide Involved Anodic Charge Transfer and Electrochemiluminescence of All-Inorganic Halide Perovskite CsPbBr ₃ Nanocrystals in an Aqueous Medium. Inorganic Chemistry, 2017, 56, 10135-10138.	4.0	34
28	Fluorescence resonance energy transfer between NH2–NaYF4:Yb,Er/NaYF4@SiO2 upconversion nanoparticles and gold nanoparticles for the detection of glutathione and cadmium ions. Talanta, 2020, 207, 120294.	5.5	34
29	Induction of Size-Dependent Breakdown of Blood-Milk Barrier in Lactating Mice by TiO2 Nanoparticles. PLoS ONE, 2015, 10, e0122591.	2.5	33
30	The potential health risk of titania nanoparticles. Journal of Hazardous Materials, 2012, 211-212, 404-413.	12.4	31
31	Dichroic Mirror-Assisted Electrochemiluminescent Assay for Simultaneously Detecting Wild-type and Mutant p53 with Photomultiplier Tubes. Analytical Chemistry, 2018, 90, 5474-5480.	6.5	31
32	Determining the Cytotoxicity of Rare Earth Element Nanoparticles in Macrophages and the Involvement of Membrane Damage. Environmental Science & Technology, 2017, 51, 13938-13948.	10.0	30
33	Enhanced Near-Infrared Electrochemiluminescence from Trinary Ag–In–S to Multinary Ag–Ga–In–S Nanocrystals via Doping-in-Growth and Its Immunosensing Applications. Analytical Chemistry, 2021, 93, 2160-2165.	6.5	30
34	Structure elucidation of nanoparticle-bound organic molecules by 1H NMR. TrAC - Trends in Analytical Chemistry, 2009, 28, 88-95.	11.4	29
35	Structural confirmation and quantification of individual ligands from the surface of multi-functionalized gold nanoparticles. Analyst, The, 2010, 135, 1210.	3.5	29
36	Probing enzyme-nanoparticle interactions using combinatorial gold nanoparticle libraries. Nano Research, 2015, 8, 1293-1308.	10.4	28

#	Article	IF	CITATIONS
37	Electrochemically Lighting Up Luminophores at Similar Low Triggering Potentials with Mechanistic Insights. Analytical Chemistry, 2020, 92, 6144-6149.	6.5	28
38	Dual-wavebands-resolved electrochemiluminescence multiplexing immunoassay with dichroic mirror assistant photomultiplier-tubes as detectors. Biosensors and Bioelectronics, 2018, 115, 77-82.	10.1	27
39	Promising Electrochemiluminescence from CuInS ₂ /ZnS Nanocrystals/Hydrazine via Internal Cu(I)/Cu(II) Couple Cycling. Analytical Chemistry, 2019, 91, 10221-10226.	6.5	26
40	Structure-Dependent Response of a Chemiluminescence Nitrogen Detector for Organic Compounds with Adjacent Nitrogen Atoms Connected by a Single Bond. Analytical Chemistry, 2007, 79, 718-726.	6.5	25
41	Spectrum-based and color-selective electrochemiluminescence immunoassay for determining human prostate specific antigen in near-infrared region. Talanta, 2017, 165, 117-121.	5.5	22
42	Promising Mercaptobenzoic Acid-Bridged Charge Transfer for Electrochemiluminescence from CuInS2@ZnS Nanocrystals via Internal Cu+/Cu2+ Couple Cycling. Journal of Physical Chemistry Letters, 2019, 10, 5408-5413.	4.6	22
43	Adsorption of Bisphenol A to a Carbon Nanotube Reduced Its Endocrine Disrupting Effect in Mice Male Offspring. International Journal of Molecular Sciences, 2014, 15, 15981-15993.	4.1	19
44	Efficient and Monochromatic Electrochemiluminescence of Aqueousâ€Soluble Au Nanoclusters via Host–Guest Recognition. Angewandte Chemie, 2019, 131, 6975-6979.	2.0	19
45	Spectrumâ€Based Electrochemiluminescence Immunoassay for Selectively Determining CA125 in Greenish Waveband. ChemElectroChem, 2017, 4, 1714-1718.	3.4	17
46	Synergistic action by multi-targeting compounds produces a potent compound combination for human NSCLC both in vitro and in vivo. Cell Death and Disease, 2014, 5, e1138-e1138.	6.3	16
47	Tunable Electron-Injection Channels of Heterostructured ZnSe@CdTe Nanocrystals for Surface-Chemistry-Involved Electrochemiluminescence. Journal of Physical Chemistry Letters, 2018, 9, 6089-6095.	4.6	16
48	Enhancing aqueous stability and radiative-charge-transfer efficiency of CsPbBr3 perovskite nanocrystals via conductive silica gel coating. Electrochimica Acta, 2020, 330, 135332.	5.2	15
49	Fluorimetric Determination of Free Cyanide by Flow-Injection Analysis. Analytical Letters, 2003, 36, 2211-2228.	1.8	13
50	Enhanced aqueous stability and radiative-charge-transfer of CsPbBr3/Ag2S perovskite nanocrystal hybrids. Journal of Electroanalytical Chemistry, 2020, 858, 113835.	3.8	12
51	Use of Triangular Silver Nanoplates as Low Potential Redox Mediators for Electrochemical Sensing. Analytical Chemistry, 2021, 93, 3295-3300.	6.5	12
52	A General Route for Chemiluminescence of n-Type Au Nanocrystals. Analytical Chemistry, 2022, 94, 8811-8817.	6.5	12
53	Selectively Lighting Up Singlet Oxygen via Aggregation-Induced Electrochemiluminescence Energy Transfer. Analytical Chemistry, 2022, 94, 3718-3726.	6.5	11
54	Fluorescence Enhancement of Rare Earths by Yttrium and its Application. Analytical Letters, 1994, 27, 1183-1191.	1.8	10

#	Article	IF	CITATIONS
55	Novel 8-hydroxylquinoline analogs induce copper-dependent proteasome inhibition and cell death in human breast cancer cells. International Journal of Oncology, 2009, 35, 1481-91.	3.3	10
56	Evaluation of copper-dependent proteasome-inhibitory and apoptosis-inducing activities of novel pyrrolidine dithiocarbamate analogues. International Journal of Molecular Medicine, 2007, , .	4.0	9
57	A RAPID AND SENSITIVE METHOD FOR THE FLUORIMETRIC DETERMINATION OF PHOSPHATE BY FLOW-INJECTION. Analytical Letters, 2001, 34, 2721-2733.	1.8	8
58	Impact of Nanomaterials on High Throughput Separation Methodologies. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 182-190.	1.1	7
59	A NEW RAPID AND SENSITIVE METHOD FOR THE FLUORIMETRIC DETERMINATION OF CATIONIC SURFACTANTS BY FLOW-INJECTION. Analytical Letters, 2002, 35, 2511-2526.	1.8	6
60	Enhanced Fluorimetric Determination of Europium with Dibenzoylmethane and Diphenylguanidine by Terbium. Analytical Letters, 1992, 25, 321-330.	1.8	5
61	A Kinetic Study of Product Cleavage Reactions from the Solid Phase by a Biocompatible and Removable Cleaving Reagent, HCl. ACS Combinatorial Science, 2007, 9, 684-689.	3.3	5
62	Feasibility of a Self-Calibrated LC/MS/UV Method to Determine the Absolute Amount of Compounds in Their Storage and Screening Lifecycle. ACS Combinatorial Science, 2008, 10, 162-165.	3.3	4
63	Kinetics of Resin-Supported Mitsunobu Esterification and Etherification Reactions. ACS Combinatorial Science, 2009, 11, 438-445.	3.3	4
64	Analytical strategies for real-time, non-invasive tracking of carbon nanomaterials in vivo. TrAC - Trends in Analytical Chemistry, 2013, 48, 1-13.	11.4	4
65	Enhanced Charge Injection and Recombination of CsPbBr3 Perovskite Nanocrystals upon Internal Heterovalent Substitution. Journal of Physical Chemistry C, 2019, 123, 29916-29921.	3.1	4
66	Tunable electrochemiluminescence properties of CsPbBr3perovskite nanocrystals using mixed-monovalent cations. New Journal of Chemistry, 2020, 44, 3323-3329.	2.8	4
67	Glow and Flash Adjustable Chemiluminescence with Tunable Waveband from the Same CuInS ₂ @ZnS Nanocrystal Luminophore. Analytical Chemistry, 2022, 94, 6902-6908.	6.5	4
68	A nano-combinatorial approach to developing cancer diagnostics: nano-combinatorial diagnostics discovery. Nanomedicine, 2012, 7, 937-940.	3.3	3
69	Synthesis and characterization of size controlled alloy nanoparticles. Physical Sciences Reviews, 2020, 5, .	0.8	1
70	Nanocombinatorial Chemistry in Nanomaterial Discovery and Nanomedicine. Acta Chimica Sinica, 2013, 71, 493.	1.4	1