
Stéphane Kéna-Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/31277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lowâ€Threshold Excitonâ€Polariton Condensation via Fast Polariton Relaxation in Organic Microcavities. Advanced Optical Materials, 2022, 10, 2102034.	3.6	13
2	Hybrid epsilon-near-zero modes of photonic gap antennas. Physical Review B, 2022, 105, .	1.1	1
3	Population of Subradiant States in Carbon Nanotube Microcavities in the Ultrastrong Light–Matter Coupling Regime. Journal of Physical Chemistry C, 2022, 126, 8417-8424.	1.5	8
4	Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature. Nature Materials, 2022, 21, 761-766.	13.3	28
5	Efficient Solutionâ€Processed Hyperfluorescent OLEDs with Spectrally Narrow Emission at 840Ânm. Advanced Functional Materials, 2021, 31, .	7.8	46
6	Role of Photon Recycling and Band Filling in Halide Perovskite Photoluminescence under Focussed Excitation Conditions. Journal of Physical Chemistry C, 2021, 125, 2240-2249.	1.5	11
7	Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2. Nature Communications, 2021, 12, 2269.	5.8	55
8	Cavity-Mediated Hybridization of Bright and Dark Excitons in an Ultrastrongly Coupled Carbon Nanotube Microcavity. ACS Photonics, 2021, 8, 2375-2383.	3.2	5
9	Enhanced Light–Matter Interaction and Polariton Relaxation by the Control of Molecular Orientation. Advanced Optical Materials, 2021, 9, 2101048.	3.6	16
10	Photonic Gap Antennas Based on High-Index-Contrast Slot Waveguides. Physical Review Applied, 2021, 16, .	1.5	2
11	Bose–Einstein Condensation of Exciton-Polaritons in Organic Microcavities. Annual Review of Physical Chemistry, 2020, 71, 435-459.	4.8	84
12	Mid-infrared Polarized Emission from Black Phosphorus Light-Emitting Diodes. Nano Letters, 2020, 20, 3651-3655.	4.5	69
13	Directional Light Emission from Layered Metal Halide Perovskite Crystals. Journal of Physical Chemistry Letters, 2020, 11, 3458-3465.	2.1	23
14	Langmuir–Blodgett fabrication of large-area black phosphorus-C ₆₀ thin films and heterojunction photodetectors. Nanoscale, 2020, 12, 19814-19823.	2.8	17
15	Spectral Responsivity and Photoconductive Gain in Thin Film Black Phosphorus Photodetectors. ACS Photonics, 2019, 6, 3092-3099.	3.2	21
16	Large-Angle, Broadband, and Multifunctional Directive Waveguide Scatterer Gratings. ACS Photonics, 2019, 6, 3298-3305.	3.2	13
17	Highly Efficient and Spectrally Narrow Nearâ€Infrared Fluorescent OLEDs Using a TADFâ€Sensitized Cyanine Dye. Advanced Optical Materials, 2019, 7, 1901144.	3.6	32
18	Triplet harvesting in the polaritonic regime: A variational polaron approach. Journal of Chemical Physics, 2019, 151, .	1.2	50

STéPHANE KéNA-COHEN

#	Article	IF	CITATIONS
19	Polariton Chemistry: Action in the Dark. ACS Central Science, 2019, 5, 386-388.	5.3	36
20	Degradation mechanism of protected ultrathin silver films and the effect of the seed layer. Applied Surface Science, 2019, 484, 335-340.	3.1	9
21	Inverting singlet and triplet excited states using strong light-matter coupling. Science Advances, 2019, 5, eaax4482.	4.7	116
22	Time-resolved imaging of carrier transport in halide perovskite thin films and evidence for nondiffusive transport. Physical Review Materials, 2019, 3, .	0.9	10
23	Manipulating Light and Matter using Strong Light-Matter Coupling. , 2019, , .		Ο
24	Polariton-Assisted Singlet Fission in Acene Aggregates. Journal of Physical Chemistry Letters, 2018, 9, 1951-1957.	2.1	106
25	Dynamical Instability of a Nonequilibrium Exciton-Polariton Condensate. ACS Photonics, 2018, 5, 111-118.	3.2	41
26	Tunable Third-Harmonic Generation from Polaritons in the Ultrastrong Coupling Regime. ACS Photonics, 2018, 5, 119-125.	3.2	71
27	Organic Photodiodes with an Extended Responsivity Using Ultrastrong Light–Matter Coupling. ACS Photonics, 2018, 5, 2921-2927.	3.2	49
28	Interacting polariton fluids in a monolayer of tungsten disulfide. Nature Nanotechnology, 2018, 13, 906-909.	15.6	96
29	Interacting Polariton Fluids in a Monolayer of Tungsten Disulfide. , 2018, , .		0
30	Nearly 40% outcoupling efficiency in OLEDs with all-metal electrodes. Applied Physics Letters, 2018, 113, 041105.	1.5	2
31	Polariton Condensation in Organic Semiconductors. Springer Series in Solid-state Sciences, 2017, , 151-163.	0.3	13
32	Spontaneous Emission inside a Hyperbolic Metamaterial Waveguide. ACS Photonics, 2017, 4, 2513-2521.	3.2	43
33	Optical control of room-temperature valley polaritons. Nature Photonics, 2017, 11, 491-496.	15.6	165
34	Room-temperature superfluidity in a polariton condensate. Nature Physics, 2017, 13, 837-841.	6.5	250
35	Continuous ultrathin silver films deposited on SiO2 and SiNx using a self-assembled monolayer. Applied Physics Letters, 2016, 109, 121603.	1.5	5
36	Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices. ACS Applied Materials & Interfaces, 2016, 8, 23086-23094.	4.0	28

STéPHANE KéNA-COHEN

#	Article	IF	CITATIONS
37	The road towards polaritonic devices. Nature Materials, 2016, 15, 1061-1073.	13.3	474
38	Generation of Rabi-frequency radiation using exciton-polaritons. Physical Review A, 2015, 92, .	1.0	18
39	Spatial Coherence and Stability in a Disordered Organic Polariton Condensate. Physical Review Letters, 2015, 115, 035301.	2.9	55
40	Strong light–matter coupling in two-dimensional atomic crystals. Nature Photonics, 2015, 9, 30-34.	15.6	865
41	Optical and Structural Properties of Ultraâ€ŧhin Gold Films. Advanced Optical Materials, 2015, 3, 71-77.	3.6	111
42	Pseudospin Selective Microcavity Polariton Emission From Two-dimensional Atomic Crystal. , 2015, , .		0
43	Strong light-matter coupling in atomic monolayers. , 2014, , .		0
44	Nonlinear interactions in an organic polariton condensate. Nature Materials, 2014, 13, 271-278.	13.3	366
45	Observation of Quantum Interference in the Plasmonic Hong-Ou-Mandel Effect. Physical Review Applied, 2014, 1, .	1.5	86
46	Low-voltage polariton electroluminescence from an ultrastrongly coupled organic light-emitting diode. Applied Physics Letters, 2014, 104, .	1.5	61
47	Ultrastrongly Coupled Exciton–Polaritons in Metalâ€Clad Organic Semiconductor Microcavities. Advanced Optical Materials, 2013, 1, 827-833.	3.6	180
48	Confined Surface Plasmon–Polariton Amplifiers. Nano Letters, 2013, 13, 1323-1329.	4.5	52
49	Microscopic theory of polariton lasing via vibronically assisted scattering. Physical Review B, 2013, 88, .	1.1	55
50	Spectroscopic ellipsometry as an optical probe of strain evolution in ferroelectric thin films. Optics Express, 2012, 20, 4419.	1.7	7
51	Quantum Statistics of Surface Plasmon Polaritons in Metallic Stripe Waveguides. Nano Letters, 2012, 12, 2504-2508.	4.5	84
52	Nanoparticle-Assisted Stimulated-Emission-Depletion Nanoscopy. ACS Nano, 2012, 6, 5291-5296.	7.3	31
53	Exciton–Polaritons in Organic Semiconductor Optical Microcavities. Springer Series in Solid-state Sciences, 2012, , 349-375.	0.3	3
54	Plasmonic Sinks for the Selective Removal of Long-Lived States. ACS Nano, 2011, 5, 9958-9965.	7.3	44

STéPHANE KéNA-COHEN

#	Article	IF	CITATIONS
55	Random lasing in low molecular weight organic thin films. Applied Physics Letters, 2011, 99, 041114.	1.5	24
56	Electrically-driven surface plasmon polariton generation using conjugated polymers. , 2011, , .		0
57	Random Lasing in Low Molecular Weight Organic Thin Films. , 2011, , .		0
58	Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photonics, 2010, 4, 371-375.	15.6	705
59	Measurement of the Mean Inner Potentials of Anthracene and Naphthalene. Physical Review Letters, 2009, 102, 065504.	2.9	8
60	Strong Exciton-Photon Coupling in an Organic Single Crystal Microcavity. Physical Review Letters, 2008, 101, 116401.	2.9	142
61	Giant Davydov splitting of the lower polariton branch in a polycrystalline tetracene microcavity. Physical Review B, 2008, 77, .	1.1	28
62	Resonant Rayleigh scattering from an anisotropic organic single-crystal microcavity. Physical Review B, 2008, 78, .	1.1	13
63	Giant Davydov splitting of the lower polariton branch in a polycrystalline tetracene microcavity. , 2007, , .		Ο
64	Green polariton photoluminescence using the red-emitting phosphor PtOEP. Physical Review B, 2007, 76, .	1.1	17
65	Strong coupling and hybridization of Frenkel and Wannier-Mott excitons in an organic-inorganic optical microcavity. Physical Review B, 2006, 74, .	1.1	46
66	White Stacked Electrophosphorescent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer. Advanced Materials, 2006, 18, 339-342.	11.1	356
67	Hybridization of Frenkel and Wannier-Mott excitons in an optical microcavity. , 2006, , .		0