
Margarida M Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3127691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring electroactive microenvironments in polymer-based nanocomposites to sensitize bacterial cells to low-dose embedded silver nanoparticles. Acta Biomaterialia, 2022, 139, 237-248.	4.1	11
2	Influence of glucose, sucrose, and dextran coatings on the stability and toxicity of silver nanoparticles. International Journal of Biological Macromolecules, 2022, 194, 461-469.	3.6	10
3	Flexible TiCu _{<i>x</i>} Thin Films with Dual Antimicrobial and Piezoresistive Characteristics. ACS Applied Bio Materials, 2022, 5, 1267-1272.	2.3	3
4	Multifunctional Touch Sensing and Antibacterial Polymerâ€Based Coreâ€5hell Metallic Nanowire Composites for High Traffic Surfaces. Advanced Materials Technologies, 2022, 7, .	3.0	4
5	Magnetoelectric Polymer-Based Nanocomposites with Magnetically Controlled Antimicrobial Activity. ACS Applied Bio Materials, 2021, 4, 559-570.	2.3	20
6	Ionic Liquid-Based Materials for Biomedical Applications. Nanomaterials, 2021, 11, 2401.	1.9	52
7	New Textile for Personal Protective Equipment—Plasma Chitosan/Silver Nanoparticles Nylon Fabric. Fibers, 2021, 9, 3.	1.8	24
8	Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2598-2607.	1.9	12
9	Tuning Properties of Cerium Dioxide Nanoparticles by Surface Modification with Catecholate-type of Ligands. Langmuir, 2020, 36, 9738-9746.	1.6	11
10	Physically Active Bioreactors for Tissue Engineering Applications. Advanced Biology, 2020, 4, e2000125.	3.0	29
11	Aging Effect on Functionalized Silver-Based Nanocoating Braided Coronary Stents. Coatings, 2020, 10, 1234.	1.2	5
12	Magnetic Bioreactor for Magneto-, Mechano- and Electroactive Tissue Engineering Strategies. Sensors, 2020, 20, 3340.	2.1	21
13	Silk fibroin magnetoactive nanocomposite films and membranes for dynamic bone tissue engineering strategies. Materialia, 2020, 12, 100709.	1.3	24
14	Photocatalytic and antimicrobial multifunctional nanocomposite membranes for emerging pollutants water treatment applications. Chemosphere, 2020, 250, 126299.	4.2	95
15	Antimicrobial and Antibiofilm Properties of Fluorinated Polymers with Embedded Functionalized Nanodiamonds. ACS Applied Polymer Materials, 2020, 2, 5014-5024.	2.0	11
16	Tailoring Bacteria Response by Piezoelectric Stimulation. ACS Applied Materials & Interfaces, 2019, 11, 27297-27305.	4.0	51
17	Multidimensional Biomechanics Approaches Though Electrically and Magnetically Active Microenvironments. , 2019, , 253-267.		3
18	Electroactive Smart Materials: Novel Tools for Tailoring Bacteria Behavior and Fight Antimicrobial Resistance. Frontiers in Bioengineering and Biotechnology, 2019, 7, 277.	2.0	20

#	Article	IF	CITATIONS
19	Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2019, 11, 45265-45275.	4.0	101
20	Comfort and Infection Control of Chitosan-impregnated Cotton Gauze as Wound Dressing. Fibers and Polymers, 2019, 20, 922-932.	1.1	21
21	Piezo- and Magnetoelectric Polymers as Biomaterials for Novel Tissue Engineering Strategies. MRS Advances, 2018, 3, 1671-1676.	0.5	26
22	Multifunctional magnetically responsive biocomposites based on genetically engineered silk-elastin-like protein. Composites Part B: Engineering, 2018, 153, 413-419.	5.9	17
23	Bottom-up Layer-by-Layer Assembling of Antibacterial Freestanding Nanobiocomposite Films. Biomacromolecules, 2018, 19, 3628-3636.	2.6	29
24	Improving Magnetoelectric Contactless Sensing and Actuation through Anisotropic Nanostructures. Journal of Physical Chemistry C, 2018, 122, 19189-19196.	1.5	15
25	Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers, 2018, 10, 161.	2.0	196
26	Nanotransformation of Vancomycin Overcomes the Intrinsic Resistance of Gram-Negative Bacteria. ACS Applied Materials & Interfaces, 2017, 9, 15022-15030.	4.0	53
27	Sonochemical synthesis and stabilization of concentrated antimicrobial silver hitosan nanoparticle dispersions. Journal of Applied Polymer Science, 2017, 134, 45136.	1.3	20
28	Coated chitosan onto gauze to efficient conditions for maintenance of the wound microenvironment. Procedia Engineering, 2017, 200, 135-140.	1.2	4
29	Biopolymers in Medical Implants: A Brief Review. Procedia Engineering, 2017, 200, 236-243.	1.2	177
30	The influence of cork on the thermal insulation properties of home textiles. Procedia Engineering, 2017, 200, 252-259.	1.2	8
31	Immobilization of antimicrobial core-shell nanospheres onto silicone for prevention of Escherichia coli biofilm formation. Process Biochemistry, 2017, 59, 116-122.	1.8	15
32	Hollow Polypropylene Yarns as a Biomimetic Brain Phantom for the Validation of High-Definition Fiber Tractography Imaging. ACS Applied Materials & Interfaces, 2016, 8, 29960-29967.	4.0	21
33	Escherichia coli and Pseudomonas aeruginosa eradication by nano-penicillin G. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2061-2069.	1.7	24
34	Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomaterialia, 2016, 33, 203-212.	4.1	84
35	Electrospinning of gelatin fibers using solutions with low acetic acid concentration: Effect of solvent composition on both diameter of electrospun fibers and cytotoxicity. Journal of Applied Polymer Science, 2015, 132, .	1.3	90
36	Biocompounds from rapeseed oil industry coâ€stream as active ingredients for skin care applications. International Journal of Cosmetic Science, 2015, 37, 496-505.	1.2	16

#	Article	IF	CITATIONS
37	Strategies for Silencing Bacterial Communication. , 2015, , 197-216.		3
38	Quorum-Quenching and Matrix-Degrading Enzymes in Multilayer Coatings Synergistically Prevent Bacterial Biofilm Formation on Urinary Catheters. ACS Applied Materials & Interfaces, 2015, 7, 27066-27077.	4.0	128
39	Polymers in Wound Repair. , 2015, , 401-431.		3
40	Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters. Applied Microbiology and Biotechnology, 2015, 99, 4373-4385.	1.7	92
41	Size and Aging Effects on Antimicrobial Efficiency of Silver Nanoparticles Coated on Polyamide Fabrics Activated by Atmospheric DBD Plasma. ACS Applied Materials & Interfaces, 2015, 7, 13731-13744.	4.0	103
42	Bio/sonochemical conversion of fish backbones into bioactive nanospheres. Process Biochemistry, 2015, 50, 1843-1851.	1.8	9
43	One-step sonochemical preparation of redox-responsive nanocapsules for glutathione mediated RNA release. Journal of Materials Chemistry B, 2014, 2, 6020-6029.	2.9	19
44	Sonochemically Processed Cationic Nanocapsules: Efficient Antimicrobials with Membrane Disturbing Capacity. Biomacromolecules, 2014, 15, 1365-1374.	2.6	46
45	Tannic acid NPs – Synthesis and immobilization onto a solid surface in a one-step process and their antibacterial and anti-inflammatory properties. Ultrasonics Sonochemistry, 2014, 21, 1916-1920.	3.8	52
46	Sonochemical Coating of Textiles with Hybrid ZnO/Chitosan Antimicrobial Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 1164-1172.	4.0	194
47	Keratins and lipids in ethnic hair. International Journal of Cosmetic Science, 2013, 35, 244-249.	1.2	47
48	Chitosan–lignosulfonates sono-chemically prepared nanoparticles: Characterisation and potential applications. Colloids and Surfaces B: Biointerfaces, 2013, 103, 1-8.	2.5	81
49	Effect of thiol-functionalisation on chitosan antibacterial activity: Interaction with a bacterial membrane model. Reactive and Functional Polymers, 2013, 73, 1384-1390.	2.0	41
50	Protein disulphide isomerase-assisted functionalization of proteinaceous substrates. Biocatalysis and Biotransformation, 2012, 30, 111-124.	1.1	4
51	Protein disulphide isomerase-induced refolding of sonochemically prepared Ribonuclease A microspheres. Journal of Biotechnology, 2012, 159, 78-82.	1.9	3
52	Protein disulphide isomerase-mediated grafting of cysteine-containing peptides onto over-bleached hair. Biocatalysis and Biotransformation, 2012, 30, 10-19.	1.1	26
53	Molecular modeling of hair keratin/peptide complex: Using MMâ€PBSA calculations to describe experimental binding results. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1409-1417.	1.5	13
54	Keratinâ€based peptide: biological evaluation and strengthening properties on relaxed hair. International Journal of Cosmetic Science, 2012, 34, 338-346.	1.2	21

#	Article	IF	CITATIONS
55	Protein disulphide isomerase-assisted functionalization of keratin-based matrices. Applied Microbiology and Biotechnology, 2011, 90, 1311-1321.	1.7	11
56	Biology of Human Hair: Know Your Hair to Control It. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 121-143.	0.6	12
57	Exploring Electroactive Microenvironments in Polymer-Based Nanocomposites to Sensitize Bacterial Cells to Low Doses of Antimicrobials. SSRN Electronic Journal, 0, , .	0.4	Ο
58	Silk Fibroin Magnetoactive Nanocomposite Films and Membranes for Dynamic Bone Tissue Engineering Strategies. SSRN Electronic Journal, 0, , .	0.4	0