Florian Bouville

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3126797/florian-bouville-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

33	1,830	16	38
papers	citations	h-index	g-index
38	2,297 ext. citations	10.8	5.36
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
33	Fracture of hierarchical multi-layered bioinspired composites. <i>Journal of the Mechanics and Physics of Solids</i> , 2022 , 159, 104750	5	1
32	Tough Bioinspired Composites That Self-Report Damage. <i>ACS Applied Materials & Damages amp; Interfaces</i> , 2021 , 13, 27481-27490	9.5	5
31	Transparent materials with stiff and tough hierarchical structures. <i>Open Ceramics</i> , 2021 , 6, 100109	3.3	1
30	Tough metal-ceramic composites with multifunctional nacre-like architecture. <i>Scientific Reports</i> , 2021 , 11, 1621	4.9	3
29	Transparent Nacre-like Composites Toughened through Mineral Bridges. <i>Advanced Functional Materials</i> , 2020 , 30, 2002149	15.6	8
28	Strong and tough nacre-like aluminas: ProcessEtructureperformance relationships and position within the nacre-inspired composite landscape. <i>Journal of Materials Research</i> , 2020 , 35, 1076-1094	2.5	13
27	Multiscale deformation processes during cold sintering of nanovaterite compacts. <i>Acta Materialia</i> , 2020 , 189, 266-273	8.4	5
26	Broadband, High-Temperature Stable Reflector for Aerospace Thermal Radiation Protection. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Ap</i>	9.5	8
25	Architectured ZnO-Cu particles for facile manufacturing of integrated Li-ion electrodes. <i>Scientific Reports</i> , 2020 , 10, 12401	4.9	
24	Cold densification and sintering of nanovaterite by pressing with water. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 893-900	6	7
23	Refractory interphase and its role on the mechanical properties of boron containing nacre-like ceramic. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 165-172	6	7
22	3D printing of sacrificial templates into hierarchical porous materials. <i>Scientific Reports</i> , 2019 , 9, 409	4.9	51
21	Processing of dense bioinspired ceramics with deliberate microstructure. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 7253-7263	3.8	11
20	Transparent and tough bulk composites inspired by nacre. <i>Nature Communications</i> , 2019 , 10, 2794	17.4	57
19	Design of textured multi-layered structures via magnetically assisted slip casting. <i>Soft Matter</i> , 2019 , 15, 3886-3896	3.6	12
18	Hierarchical Toughening of Nacre-Like Composites. <i>Advanced Functional Materials</i> , 2019 , 29, 1806800	15.6	47
17	3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients. <i>Advanced Materials</i> , 2018 , 30, e1705808	24	98

LIST OF PUBLICATIONS

16	Iron-based particles for the magnetically-triggered crack healing of bituminous materials. <i>Construction and Building Materials</i> , 2018 , 164, 775-782	6.7	19
15	Nacre-like ceramic refractories for high temperature applications. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 2186-2193	6	16
14	Quantifying the role of mineral bridges on the fracture resistance of nacre-like composites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12698-1270	3 ^{11.5}	24
13	Freezing of Gelled Suspensions: a Facile Route toward Mesoporous TiO2 Particles for High-Capacity Lithium-Ion Electrodes. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6622-6629	5.6	4
12	Geologically-inspired strong bulk ceramics made with water at room temperature. <i>Nature Communications</i> , 2017 , 8, 14655	17.4	88
11	Mineral Nano-Interconnectivity Stiffens and Toughens Nacre-like Composite Materials. <i>Advanced Materials</i> , 2017 , 29, 1605039	24	59
10	Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. <i>Nature Energy</i> , 2016 , 1,	62.3	314
9	3D-TEM microstructure analyses of anisotropic and isotropic aerogels of TiO2 nanoparticles 2016 , 105	2-1053	O
8	Role of the polymer phase in the mechanics of nacre-like composites. <i>Journal of the Mechanics and Physics of Solids</i> , 2016 , 96, 133-146	5	62
7	Magnetically assisted slip casting of bioinspired heterogeneous composites. <i>Nature Materials</i> , 2015 , 14, 1172-9	27	219
6	Strong, tough and stiff bioinspired ceramics from brittle constituents. <i>Nature Materials</i> , 2014 , 13, 508-	142 ₇	550
5	Templated Grain Growth in Macroporous Materials. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 1736-1742	3.8	40
4	Self-assembly of faceted particles triggered by a moving ice front. <i>Langmuir</i> , 2014 , 30, 8656-63	4	55
3	Lightweight and stiff cellular ceramic structures by ice templating. <i>Journal of Materials Research</i> , 2014 , 29, 175-181	2.5	18
2	Dispersion of Boron Nitride Powders in Aqueous Suspensions with Cellulose. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 394-398	3.8	14
1	Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2013 , 317, 385-388	1.2	7