Florian Bouville

List of Publications by Citations

Source: https://exaly.com/author-pdf/3126797/florian-bouville-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,830 16 38 33 g-index h-index citations papers 10.8 5.36 38 2,297 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
33	Strong, tough and stiff bioinspired ceramics from brittle constituents. <i>Nature Materials</i> , 2014 , 13, 508-7	1427	550
32	Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. <i>Nature Energy</i> , 2016 , 1,	62.3	314
31	Magnetically assisted slip casting of bioinspired heterogeneous composites. <i>Nature Materials</i> , 2015 , 14, 1172-9	27	219
30	3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients. <i>Advanced Materials</i> , 2018 , 30, e1705808	24	98
29	Geologically-inspired strong bulk ceramics made with water at room temperature. <i>Nature Communications</i> , 2017 , 8, 14655	17.4	88
28	Role of the polymer phase in the mechanics of nacre-like composites. <i>Journal of the Mechanics and Physics of Solids</i> , 2016 , 96, 133-146	5	62
27	Mineral Nano-Interconnectivity Stiffens and Toughens Nacre-like Composite Materials. <i>Advanced Materials</i> , 2017 , 29, 1605039	24	59
26	Transparent and tough bulk composites inspired by nacre. <i>Nature Communications</i> , 2019 , 10, 2794	17.4	57
25	Self-assembly of faceted particles triggered by a moving ice front. <i>Langmuir</i> , 2014 , 30, 8656-63	4	55
24	3D printing of sacrificial templates into hierarchical porous materials. <i>Scientific Reports</i> , 2019 , 9, 409	4.9	51
23	Hierarchical Toughening of Nacre-Like Composites. <i>Advanced Functional Materials</i> , 2019 , 29, 1806800	15.6	47
22	Templated Grain Growth in Macroporous Materials. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 1736-1742	3.8	40
21	Quantifying the role of mineral bridges on the fracture resistance of nacre-like composites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12698-1270	3 ^{11.5}	24
20	Iron-based particles for the magnetically-triggered crack healing of bituminous materials. <i>Construction and Building Materials</i> , 2018 , 164, 775-782	6.7	19
19	Lightweight and stiff cellular ceramic structures by ice templating. <i>Journal of Materials Research</i> , 2014 , 29, 175-181	2.5	18
18	Nacre-like ceramic refractories for high temperature applications. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 2186-2193	6	16
17	Dispersion of Boron Nitride Powders in Aqueous Suspensions with Cellulose. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 394-398	3.8	14

LIST OF PUBLICATIONS

16	Strong and tough nacre-like aluminas: ProcessEtructureperformance relationships and position within the nacre-inspired composite landscape. <i>Journal of Materials Research</i> , 2020 , 35, 1076-1094	2.5	13
15	Design of textured multi-layered structures via magnetically assisted slip casting. <i>Soft Matter</i> , 2019 , 15, 3886-3896	3.6	12
14	Processing of dense bioinspired ceramics with deliberate microstructure. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 7253-7263	3.8	11
13	Transparent Nacre-like Composites Toughened through Mineral Bridges. <i>Advanced Functional Materials</i> , 2020 , 30, 2002149	15.6	8
12	Broadband, High-Temperature Stable Reflector for Aerospace Thermal Radiation Protection. <i>ACS Applied Materials & District Materials & </i>	9.5	8
11	Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2013 , 317, 385-388	1.2	7
10	Cold densification and sintering of nanovaterite by pressing with water. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 893-900	6	7
9	Refractory interphase and its role on the mechanical properties of boron containing nacre-like ceramic. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 165-172	6	7
8	Multiscale deformation processes during cold sintering of nanovaterite compacts. <i>Acta Materialia</i> , 2020 , 189, 266-273	8.4	5
7	Tough Bioinspired Composites That Self-Report Damage. <i>ACS Applied Materials & Damp; Interfaces</i> , 2021 , 13, 27481-27490	9.5	5
6	Freezing of Gelled Suspensions: a Facile Route toward Mesoporous TiO2 Particles for High-Capacity Lithium-Ion Electrodes. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6622-6629	5.6	4
5	Tough metal-ceramic composites with multifunctional nacre-like architecture. <i>Scientific Reports</i> , 2021 , 11, 1621	4.9	3
4	Fracture of hierarchical multi-layered bioinspired composites. <i>Journal of the Mechanics and Physics of Solids</i> , 2022 , 159, 104750	5	1
3	Transparent materials with stiff and tough hierarchical structures. <i>Open Ceramics</i> , 2021 , 6, 100109	3.3	1
2	3D-TEM microstructure analyses of anisotropic and isotropic aerogels of TiO2 nanoparticles 2016 , 1052	2-1053	0
1	Architectured ZnO-Cu particles for facile manufacturing of integrated Li-ion electrodes. <i>Scientific Reports</i> , 2020 , 10, 12401	4.9	