Heiko Schoof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3126723/publications.pdf Version: 2024-02-01

HEIKO SCHOOF

#	Article	IF	CITATIONS
1	MuWU: Mutant-seq library analysis and annotation. Bioinformatics, 2022, 38, 837-838.	1.8	1
2	Single-parent expression complementation contributes to phenotypic heterosis in maize hybrids. Plant Physiology, 2022, , .	2.3	6
3	<i>ENHANCED GRAVITROPISM 2</i> encodes a STERILE ALPHA MOTIF–containing protein that controls root growth angle in barley and wheat. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
4	Robust non-syntenic gene expression patterns in diverse maize hybrids during root development. Journal of Experimental Botany, 2020, 71, 865-876.	2.4	3
5	<i>BonnMu</i> : A Sequence-Indexed Resource of Transposon-Induced Maize Mutations for Functional Genomics Studies. Plant Physiology, 2020, 184, 620-631.	2.3	25
6	Transcriptome profiling at osmotic and ionic phases of salt stress response in bread wheat uncovers trait-specific candidate genes. BMC Plant Biology, 2020, 20, 428.	1.6	16
7	Transcriptome and Parasitome Analysis of Beet Cyst Nematode Heterodera schachtii. Scientific Reports, 2020, 10, 3315.	1.6	7
8	High light induces species specific changes in the membrane lipid composition of Chlorella. Biochemical Journal, 2020, 477, 2543-2559.	1.7	4
9	The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biology, 2019, 20, 244.	3.8	261
10	Single-Parent Expression Is a General Mechanism Driving Extensive Complementation of Non-syntenic Genes in Maize Hybrids. Current Biology, 2018, 28, 431-437.e4.	1.8	50
11	Stability of Single-Parent Gene Expression Complementation in Maize Hybrids upon Water Deficit Stress. Plant Physiology, 2017, 173, 1247-1257.	2.3	36
12	Identification and characterization of a putative protein disulfide isomerase (HsPDI) as an alleged effector of Heterodera schachtii. Scientific Reports, 2017, 7, 13536.	1.6	27
13	Heterodera schachtii Tyrosinase-like protein - a novel nematode effector modulating plant hormone homeostasis. Scientific Reports, 2017, 7, 6874.	1.6	33
14	An improved procedure for isolation of high-quality RNA from nematode-infected Arabidopsis roots through laser capture microdissection. Plant Methods, 2016, 12, 25.	1.9	25
15	Structural insights into the function of the core-circadian factor TIMING OF CAB2 EXPRESSION 1 (TOC1). Journal of Circadian Rhythms, 2014, 6, 3.	2.9	16
16	The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics, 2013, 45, 51-58.	9.4	731
17	Marker2sequence, mine your QTL regions for candidate genes. Bioinformatics, 2012, 28, 1921-1922.	1.8	8
18	Analysis of the <i>Arabidopsis</i> Shoot Meristem Transcriptome during Floral Transition Identifies Distinct Regulatory Patterns and a Leucine-Rich Repeat Protein That Promotes Flowering. Plant Cell, 2012, 24, 444-462.	3.1	178

Негко Schoof

#	Article	IF	CITATIONS
19	The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485, 635-641.	13.7	2,860
20	Natural variation of H3K27me3 distribution between two Arabidopsis accessions and its association with flanking transposable elements. Genome Biology, 2012, 13, R117.	13.9	34
21	The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 2011, 480, 520-524.	13.7	1,166
22	An International Bioinformatics Infrastructure to Underpin the <i>Arabidopsis</i> Community. Plant Cell, 2010, 22, 2530-2536.	3.1	23
23	A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, .	1.6	73
24	Control of perennial flowering and perenniality in Arabis alpina, a relative of Arabidopsis thaliana. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, S195-S196.	0.8	2
25	PEP1 regulates perennial flowering in Arabis alpina. Nature, 2009, 459, 423-427.	13.7	325
26	Integrating <i>ELF4</i> into the circadian system through combined structural and functional studies. HFSP Journal, 2009, 3, 350-366.	2.5	99
27	Protein function prediction and annotation in an integrated environment powered by web services (AFAWE). Bioinformatics, 2008, 24, 2393-2394.	1.8	11
28	Interoperability with Moby 1.0It's better than sharing your toothbrush!. Briefings in Bioinformatics, 2008, 9, 220-231.	3.2	91
29	MIPSPlantsDBplant database resource for integrative and comparative plant genome research. Nucleic Acids Research, 2007, 35, D834-D840.	6.5	47
30	Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Research, 2007, 17, 175-183.	2.4	218
31	Comparative sequence analysis of Solanum and Arabidopsis in a hot spot for pathogen resistance on potato chromosome V reveals a patchwork of conserved and rapidly evolving genome segments. BMC Genomics, 2007, 8, 112.	1.2	38
32	MIPS Plant Genome Information Resources. , 2007, 406, 137-159.		6
33	Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14959-14964.	3.3	286
34	BioMOBY Successfully Integrates Distributed Heterogeneous Bioinformatics Web Services. The PlaNet Exemplar Case. Plant Physiology, 2005, 138, 5-17.	2.3	84
35	Munich Information Center for Protein Sequences Plant Genome Resources. A Framework for Integrative and Comparative Analyses. Plant Physiology, 2005, 138, 1301-1309.	2.3	13
36	PlantMarkersa database of predicted molecular markers from plants. Nucleic Acids Research, 2004, 33, D628-D632.	6.5	40

Негко Schoof

#	Article	IF	CITATIONS
37	MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource for plant genomics. Nucleic Acids Research, 2004, 32, 373D-376.	6.5	82
38	Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics, 2004, 5, 39.	1.2	355
39	The Arabidopsis Genome and Its Use in Cereal Genomics. , 2004, , 515-534.		0
40	Towards Interoperability in Genome Databases: The MAtDB (MIPSArabidopsis thalianaDatabase) Experience. Comparative and Functional Genomics, 2003, 4, 255-258.	2.0	8
41	Comparison of rice and Arabidopsis annotation. Current Opinion in Plant Biology, 2003, 6, 106-112.	3.5	27
42	MOsDB: an integrated information resource for rice genomics. Nucleic Acids Research, 2003, 31, 190-192.	6.5	27
43	MIPS Arabidopsisthaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome. Nucleic Acids Research, 2002, 30, 91-93.	6.5	159
44	The Stem Cell Population of Arabidopsis Shoot Meristems Is Maintained by a Regulatory Loop between the CLAVATA and WUSCHEL Genes. Cell, 2000, 100, 635-644.	13.5	1,521
45	Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO Journal, 1998, 17, 1799-1809.	3.5	342
46	Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem. Cell, 1998, 95, 805-815.	13.5	1,487
47	Maintaining the shoot meristem — the role of CLAVATA1. Trends in Plant Science. 1997. 2. 325-327.	4.3	20