
Zhongxue Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3126435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves. Angewandte Chemie - International Edition, 2021, 60, 21310-21318.	13.8	318
2	Recent Progress in Rechargeable Sodiumâ€Ion Batteries: toward Highâ€Power Applications. Small, 2019, 15, e1805427.	10.0	254
3	In Situ Generation of Fewâ€Layer Graphene Coatings on SnO ₂ â€6iC Coreâ€6hell Nanoparticles for Highâ€Performance Lithiumâ€Ion Storage. Advanced Energy Materials, 2012, 2, 95-102.	19.5	233
4	Recent Advances in Sodium-Ion Battery Materials. Electrochemical Energy Reviews, 2018, 1, 294-323.	25.5	224
5	Multilayered Nanocrystalline SnO ₂ Hollow Microspheres Synthesized by Chemically Induced Self-Assembly in the Hydrothermal Environment. Journal of Physical Chemistry C, 2007, 111, 14067-14071.	3.1	195
6	Recent Progress in Ironâ€Based Electrode Materials for Gridâ€Scale Sodiumâ€Ion Batteries. Small, 2018, 14, 1703116.	10.0	146
7	A Fully Sodiated NaVOPO4 with Layered Structure for High-Voltage and Long-Lifespan Sodium-Ion Batteries. CheM, 2018, 4, 1167-1180.	11.7	140
8	3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy, 2019, 56, 160-168.	16.0	134
9	Na4Fe3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries. Energy Storage Materials, 2019, 22, 330-336.	18.0	111
10	Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4988.	10.3	103
11	Copper sulfide nanoparticles as high-performance cathode materials for magnesium secondary batteries. Nanoscale, 2018, 10, 12526-12534.	5.6	95
12	Hydrothermal preparation of nitrogen, boron co-doped curved graphene nanoribbons with high dopant amounts for high-performance lithium sulfur battery cathodes. Journal of Materials Chemistry A, 2017, 5, 7403-7415.	10.3	93
13	Surface-oriented and nanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 17768.	6.7	86
14	A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 11395-11402.	10.3	84
15	Building thermally stable Li-ion batteries using a temperature-responsive cathode. Journal of Materials Chemistry A, 2016, 4, 11239-11246.	10.3	68
16	A novel Fe-defect induced pure-phase Na4Fe2.91(PO4)2P2O7 cathode material with high capacity and ultra-long lifetime for low-cost sodium-ion batteries. Nano Energy, 2022, 91, 106680.	16.0	67
17	Recent Advances in Conversion-Type Electrode Materials for Post Lithium-Ion Batteries. , 2021, 3, 956-977.		66
18	Enhanced Li Storage Performance of LiNi _{0.5} Mn _{1.5} O ₄ –Coated 0.4Li ₂ MnO ₃ ·0.6LiNi _{1/3} Co _{1/3} Mn _{1/3} O _{2 Cathode Materials for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 16888-16894.}	? <b &np>	65

#	Article	IF	CITATIONS
19	Symmetric Sodium-Ion Capacitor Based on Na _{0.44} MnO ₂ Nanorods for Low-Cost and High-Performance Energy Storage. ACS Applied Materials & Interfaces, 2018, 10, 11689-11698.	8.0	62
20	Emerging Intercalation Cathode Materials for Multivalent Metalâ€ion Batteries: Status and Challenges. Small Structures, 2021, 2, 2100082.	12.0	61
21	Facile synthesis and stable lithium storage performances of Sn- sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries. Journal of Materials Chemistry, 2010, 20, 7266.	6.7	60
22	A hollow CuS nanocube cathode for rechargeable Mg batteries: effect of the structure on the performance. Journal of Materials Chemistry A, 2019, 7, 21410-21420.	10.3	58
23	High Rate, Long Lifespan LiV ₃ O ₈ Nanorods as a Cathode Material for Lithiumâ€lon Batteries. Small, 2017, 13, 1603148.	10.0	57
24	Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves. Angewandte Chemie, 2021, 133, 21480-21488.	2.0	55
25	Preparation and electrochemical performance of Sn–Co–C composite as anode material for Li-ion batteries. Journal of Power Sources, 2009, 189, 730-732.	7.8	54
26	Design Strategies for Highâ€Voltage Aqueous Batteries. Small Structures, 2021, 2, 2100001.	12.0	54
27	Nanosheets assembling hierarchical starfish-like Cu2â^'xSe as advanced cathode for rechargeable Mg batteries. Chemical Engineering Journal, 2020, 384, 123235.	12.7	53
28	Novel Alkaline Zn/Na _{0.44} MnO ₂ Dual-Ion Battery with a High Capacity and Long Cycle Lifespan. ACS Applied Materials & Interfaces, 2018, 10, 34108-34115.	8.0	50
29	Edge-Rich Quasi-Mesoporous Nitrogen-Doped Carbon Framework Derived from Palm Tree Bark Hair for Electrochemical Applications. ACS Applied Materials & amp; Interfaces, 2018, 10, 27047-27055.	8.0	49
30	Transition-metal chlorides as conversion cathode materials for Li-ion batteries. Electrochimica Acta, 2012, 68, 202-205.	5.2	48
31	Recent Developments in Cathode Materials for Na Ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 211-241.	4.9	46
32	Influence of Carbon Precursors on the Structure, Composition, and Oxygen Reduction Reaction Performance of Nitrogen-Doped Carbon Materials. Journal of Physical Chemistry C, 2015, 119, 28757-28765.	3.1	45
33	Transition metal oxides based on conversion reaction for sodium-ion battery anodes. Materials Today Chemistry, 2018, 9, 114-132.	3.5	44
34	Effects of carbon-chain length of trifluoroacetate co-solvents for lithium-ion battery electrolytes using at low temperature. Journal of Fluorine Chemistry, 2013, 156, 136-143.	1.7	43
35	A new co-solvent for wide temperature lithium ion battery electrolytes: 2,2,2-Trifluoroethyl n-caproate. Journal of Power Sources, 2015, 274, 676-684.	7.8	43
36	Understanding Voltage Decay in Lithium-Rich Manganese-Based Layered Cathode Materials by Limiting Cutoff Voltage. ACS Applied Materials & Interfaces, 2016, 8, 18867-18877.	8.0	43

#	Article	IF	CITATIONS
37	Electrochemical performances of Al-based composites as anode materials for Li-ion batteries. Electrochimica Acta, 2009, 54, 4118-4122.	5.2	40
38	A facile one-step hydrothermal synthesis of α-Fe ₂ O ₃ nanoplates imbedded in graphene networks with high-rate lithium storage and long cycle life. Journal of Materials Chemistry A, 2014, 2, 13942-13948.	10.3	39
39	A Green and Scalable Synthesis of Na ₃ Fe ₂ (PO ₄)P ₂ O ₇ /rGO Cathode for Highâ€Rate and Longâ€Life Sodiumâ€Ion Batteries. Small Methods, 2021, 5, e2100372.	8.6	39
40	Chemical modification of pristine carbon nanotubes and their exploitation as the carbon hosts for lithium-sulfur batteries. International Journal of Hydrogen Energy, 2016, 41, 21850-21860.	7.1	35
41	Toward wideâ€ŧemperature electrolyte for lithium–ion batteries. , 2022, 1, .		32
42	Antimony-Coated SiC Nanoparticles as Stable and High-Capacity Anode Materials for Li-Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 15196-15201.	3.1	30
43	Graphene oxide wrapped hierarchical porous carbon–sulfur composite cathode with enhanced cycling and rate performance for lithium sulfur batteries. RSC Advances, 2015, 5, 5516-5522.	3.6	29
44	Nanoplate-stacked baguette-like LiVO ₃ as a high performance cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 8750-8755.	10.3	27
45	Effect of Annealing on the First-Cycle Performance and Reversible Capabilities of Lithium-Rich Layered Oxide Cathodes. Journal of Physical Chemistry C, 2014, 118, 11505-11511.	3.1	26
46	CoSe ₂ hollow microspheres, nano-polyhedra and nanorods as pseudocapacitive Mg-storage materials with fast solid-state Mg ²⁺ diffusion kinetics. Nanoscale, 2019, 11, 23173-23181.	5.6	26
47	Research progress of tunnel-structural Na0.44MnO2 cathode for sodium-ion batteries: A mini review. Electrochemistry Communications, 2021, 122, 106897.	4.7	26
48	Anode behavior of Sn/WC/graphene triple layered composite for lithium-ion batteries. Electrochimica Acta, 2013, 108, 674-679.	5.2	24
49	Zero-strain Na ₄ Fe ₇ (PO ₄) ₆ as a novel cathode material for sodium–ion batteries. Chemical Communications, 2019, 55, 9043-9046.	4.1	24
50	A stable "rocking-chair" zinc-ion battery boosted by low-strain Zn3V4(PO4)6 cathode. Nano Energy, 2022, 100, 107520.	16.0	24
51	LiF/Fe nanocomposite as a lithium-rich and high capacity conversion cathode material for Li-ion batteries. Journal of Power Sources, 2012, 217, 54-58.	7.8	23
52	<i>a</i> -MoS ₃ @CNT nanowire cathode for rechargeable Mg batteries: a pseudocapacitive approach for efficient Mg-storage. Nanoscale, 2019, 11, 16043-16051.	5.6	23
53	Pb-sandwiched nanoparticles as anode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 291-295.	2.5	22
54	Facile preparation of Pd–Au bimetallic nanoparticles via in-situ self-assembly in reverse microemulsion and their electrocatalytic properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 463, 55-62.	4.7	22

#	Article	IF	CITATIONS
55	Preparation and characterization of trifluoroethyl aliphatic carboxylates as co-solvents for the carbonate-based electrolyte of lithium-ion batteries. Journal of Fluorine Chemistry, 2014, 161, 110-119.	1.7	22
56	Facile synthesis of nitrogen-doped unzipped carbon nanotubes and their electrochemical properties. RSC Advances, 2015, 5, 8175-8181.	3.6	21
57	Preparation, Characterization, and Lithium Intercalation Behavior of LiVO ₃ Cathode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 3242-3249.	3.1	21
58	Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes. Journal of Power Sources, 2015, 298, 355-362.	7.8	20
59	NaV ₃ O ₈ Nanoplates as a Lithiumâ€lonâ€Battery Cathode with Superior Rate Capability and Cycle Stability. ChemElectroChem, 2016, 3, 122-129.	3.4	20
60	Synthesis of Monoclinic Li[Li _{0.2} Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ Nanoparticles by a Layeredâ€Template Route for Highâ€Performance Liâ€Ion Batteries. European Journal of Inorganic Chemistry, 2013, 2013, 2887-2892.	2.0	19
61	A nitrogen-doped unzipped carbon nanotube/sulfur composite as an advanced cathode for lithium–sulfur batteries. New Journal of Chemistry, 2015, 39, 8901-8907.	2.8	17
62	Novel cathode materials LixNa2â^'xV2O6 (xÂ=Â2, 1.4, 1, 0) for high-performance lithium-ion batteries. Journal of Power Sources, 2017, 344, 25-31.	7.8	15
63	Facile synthesis and electrochemical Mg-storage performance of Sb ₂ Se ₃ nanowires and Bi ₂ Se ₃ nanosheets. Dalton Transactions, 2019, 48, 17516-17523.	3.3	15
64	Cu ₉ S ₅ Nanoflower Cathode for Mg Secondary Batteries: High Performance and Reaction Mechanism. Energy Technology, 2019, 7, 1800777.	3.8	15
65	Facile synthesis of hierarchical porous Li2FeSiO4/C as highly stable cathode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 877-884.	2.5	14
66	Rechargeable Mg batteries based on a Ag ₂ S conversion cathode with fast solid-state Mg ²⁺ diffusion kinetics. Dalton Transactions, 2019, 48, 14390-14397.	3.3	13
67	A novel Mg/Na hybrid battery based on Na2VTi(PO4)3 cathode: Enlightening the Na-intercalation cathodes by a metallic Mg anode and a dual-ion Mg2+/Na+ electrolyte. Chemical Engineering Journal, 2020, 399, 125689.	12.7	13
68	Template synthesis of mesoporous Li2MnSiO4@C composite with improved lithium storage properties. Electrochimica Acta, 2018, 291, 124-131.	5.2	12
69	Improved Sodium Storage Performance of Na _{0.44} MnO ₂ Cathode at a High Temperature by Al ₂ 0 ₃ Coating. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 1357-1364.	4.9	12
70	Facile Synthesis of Porous Coralline LiVO ₃ as Highâ€Performance Liâ€Ion Battery Cathodes. ChemistrySelect, 2018, 3, 592-598.	1.5	11
71	Understanding capacity fading of the LiVO ₃ cathode material by limiting the cutoff voltage. Physical Chemistry Chemical Physics, 2019, 21, 7009-7015.	2.8	11
72	Facile synthesis of porous Pt botryoidal nanowires and their electrochemical properties. Electrochimica Acta, 2014, 147, 643-649.	5.2	10

#	Article	IF	CITATIONS
73	Rechargeable Mg–M (M = Li, Na and K) dual-metal–ion batteries based on a Berlin green cathode and a metallic Mg anode. Physical Chemistry Chemical Physics, 2019, 21, 20269-20275.	2.8	10
74	Will Vanadiumâ€Based Electrode Materials Become the Future Choice for Metalâ€lon Batteries?. ChemSusChem, 2022, 15, .	6.8	10
75	Improved Initial Charging Capacity of Na-poor Na0.44MnO2 via Chemical Presodiation Strategy for Low-cost Sodium-ion Batteries. Chemical Research in Chinese Universities, 2021, 37, 274-279.	2.6	9
76	Tailoring NaVO3 as a novel stable cathode for lithium rechargeable batteries. Electrochimica Acta, 2019, 307, 224-231.	5.2	7
77	Effect of Li1/3Mn2/3-Substitution on Electrochemical Performance of P2-Na0.74CoO2 Cathode for Sodium-ion Batteries. Electrochimica Acta, 2016, 222, 862-866.	5.2	6
78	In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage (Adv. Energy Mater. 1/2012). Advanced Energy Materials, 2012, 2, 94-94.	19.5	5
79	Glucose hydrothermal encapsulation of carbonized silicone polyester to prepare anode materials for lithium batteries with improved cycle stability. RSC Advances, 2022, 12, 9238-9248.	3.6	5
80	Synthesis of Ag-Ru Nanostructures for Electroreduction of Benzyl Chloride. ECS Electrochemistry Letters, 2014, 3, H20-H23.	1.9	3
81	The significance of the stable Rhombohedral structure in Li-rich cathodes for lithium-ion batteries. Ionics, 2017, 23, 367-375.	2.4	3
82	Rechargeable Mg–Na and Mg–K hybrid batteries based on a low-defect Co ₃ [Co(CN) ₆] ₂ nanocube cathode. Physical Chemistry Chemical Physics, 2021, 23, 17530-17535.	2.8	3
83	Porous, Encapsulated Si–O–C Lithium-Ion Battery Anode Materials from Silicone-Containing Polyesters: Influences of Graphene Oxides. ACS Applied Energy Materials, 2022, 5, 4577-4586.	5.1	3
84	Research Development on Lithium Rich Layered Oxide Cathode Materials. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2017, 32, 792.	1.3	0