Timothy Goodall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3126275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Land use driven change in soil pH affects microbial carbon cycling processes. Nature Communications, 2018, 9, 3591.	5.8	380
2	Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nature Geoscience, 2019, 12, 755-761.	5.4	230
3	Soil microbial communities with greater investment in resource acquisition have lower growth yield. Soil Biology and Biochemistry, 2019, 132, 36-39.	4.2	98
4	Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Communications Earth & Environment, 2020, 1, .	2.6	87
5	The pH optimum of soil exoenzymes adapt to long term changes in soil pH. Soil Biology and Biochemistry, 2019, 138, 107601.	4.2	73
6	Protists have divergent effects on bacterial diversity along a productivity gradient. Biology Letters, 2010, 6, 639-642.	1.0	60
7	Climate change alters temporal dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt. ISME Journal, 2021, 15, 2264-2275.	4.4	51
8	The Effects of In Vivo Exposure to Copper Oxide Nanoparticles on the Gut Microbiome, Host Immunity, and Susceptibility to a Bacterial Infection in Earthworms. Nanomaterials, 2020, 10, 1337.	1.9	24
9	In-situ fluorescence spectroscopy indicates total bacterial abundance and dissolved organic carbon. Science of the Total Environment, 2020, 738, 139419.	3.9	22
10	Tryptophan-like and humic-like fluorophores are extracellular in groundwater: implications as real-time faecal indicators. Scientific Reports, 2020, 10, 15379.	1.6	15
11	Plants with arbuscular mycorrhizal fungi efficiently acquire Nitrogen from substrate additions by shaping the decomposer community composition and their net plant carbon demand. Plant and Soil, 2022, 475, 473-490.	1.8	15
12	Application of eDNA metabarcoding in a fragmented lowland river: Spatial and methodological comparison of fish species composition. Environmental DNA, 2021, 3, 458-471.	3.1	13
13	Long-Term Drought and Warming Alter Soil Bacterial and Fungal Communities in an Upland Heathland. Ecosystems, 2022, 25, 1279-1294.	1.6	13
14	In-situ fluorescence spectroscopy is a more rapid and resilient indicator of faecal contamination risk in drinking water than faecal indicator organisms. Water Research, 2021, 206, 117734.	5.3	13
15	Bacterial and archaeal taxa are reliable indicators of soil restoration across distributed calcareous grasslands. European Journal of Soil Science, 2021, 72, 2430-2444.	1.8	12
16	Shrub expansion modulates belowground impacts of changing snow conditions in alpine grasslands. Ecology Letters, 2022, 25, 52-64.	3.0	10
17	Comparison of greenhouse gas fluxes from tropical forests and oil palm plantations on mineral soil. Biogeosciences, 2021, 18, 1559-1575.	1.3	9
18	Characterization of communal sink drain communities of a university campus. Environmental DNA, 2021, 3, 901-911.	3.1	8

#	Article	IF	CITATIONS
19	Pasture age impacts soil fungal composition while bacteria respond to soil chemistry. Agriculture, Ecosystems and Environment, 2022, 330, 107900.	2.5	6
20	The effect of rootâ€associated microbes on plant growth and chemical defence traits across two contrasted elevations. Journal of Ecology, 2021, 109, 38-50.	1.9	4