
Andrés Morales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3126242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Incorporation of reconstituted acetylcholine receptors from Torpedo into the Xenopus oocyte membrane Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8468-8472.	7.1	58
2	Effects of central or peripheral axotomy on membrane properties of sensory neurones in the petrosal ganglion of the cat Journal of Physiology, 1987, 391, 39-56.	2.9	56
3	Towards understanding the molecular basis of ion channel modulation by lipids: Mechanistic models and current paradigms. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1507-1516.	2.6	35
4	The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane. British Journal of Pharmacology, 2005, 144, 88-97.	5.4	27
5	Multiple inhibitory actions of lidocaine on <i>Torpedo</i> nicotinic acetylcholine receptors transplanted to <i>Xenopus</i> oocytes. Journal of Neurochemistry, 2011, 117, 1009-1019.	3.9	25
6	Modulation of the potassium channel KcsA by anionic phospholipids: Role of arginines at the non-annular lipid binding sites. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 183029.	2.6	22
7	Functional Incorporation of P-Glycoprotein intoXenopusOocyte Plasma Membrane Fails to Elicit a Swelling-Evoked Conductance. Biochemical and Biophysical Research Communications, 1997, 237, 407-412.	2.1	21
8	Electrophysiological properties of newborn and adult rat spinal cord glycine receptors expressed in Xenopus oocytes Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3097-3101.	7.1	20
9	Competing Lipid-Protein and Protein-Protein Interactions Determine Clustering and Gating Patterns in the Potassium Channel from Streptomyces lividans (KcsA). Journal of Biological Chemistry, 2015, 290, 25745-25755.	3.4	20
10	Protein Orientation Affects the Efficiency of Functional Protein Transplantation into the Xenopus Oocyte Membrane. Journal of Membrane Biology, 2002, 185, 117-127.	2.1	17
11	Diverse inhibitory actions of quaternary ammonium cholinesterase inhibitors on Torpedo nicotinic ACh receptors transplanted to Xenopus oocytes. British Journal of Pharmacology, 2007, 151, 1280-1292.	5.4	16
12	Differential binding of monovalent cations to KcsA: Deciphering the mechanisms of potassium channel selectivity. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 779-788.	2.6	16
13	Membrane properties of primary sensory neurones of the cat after peripheral reinnervation Journal of Physiology, 1988, 405, 219-232.	2.9	14
14	Membrane currents in immature oocytes of the Rana perezi frog. Pflugers Archiv European Journal of Physiology, 1997, 434, 413-421.	2.8	14
15	Membrane properties of glossopharyngeal sensory neurons in the petrosal ganglion of the cat. Brain Research, 1987, 401, 340-346.	2.2	12
16	Direct voltage control of endogenous lysophosphatidic acid G-protein-coupled receptors in <i>Xenopus</i> oocytes. Journal of Physiology, 2010, 588, 1683-1693.	2.9	12
17	Contribution of Ion Binding Affinity to Ion Selectivity and Permeation in KcsA, a Model Potassium Channel. Biochemistry, 2012, 51, 3891-3900.	2.5	12
18	Lidocaine effects on acetylcholine-elicited currents from mouse superior cervical ganglion neurons. Neuroscience Research, 2013, 75, 198-203.	1.9	12

Andrés Morales

#	Article	IF	CITATIONS
19	Modulation of Function, Structure and Clustering of K+ Channels by Lipids: Lessons Learnt from KcsA. International Journal of Molecular Sciences, 2020, 21, 2554.	4.1	12
20	Desensitization of junctional and extrajunctional nicotinic ACh receptors expressed in Xenopus oocytes. Molecular Brain Research, 1992, 16, 323-329.	2.3	11
21	Accessibility of Cations to the Selectivity Filter of KcsA in the Inactivated State: An Equilibrium Binding Study. International Journal of Molecular Sciences, 2019, 20, 689.	4.1	10
22	A novel mitochondrial Kv1.3–caveolin axis controls cell survival and apoptosis. ELife, 2021, 10, .	6.0	10
23	Selective exclusion and selective binding both contribute to ion selectivity in KcsA, a model potassium channel. Journal of Biological Chemistry, 2017, 292, 15552-15560.	3.4	9
24	Functional transplantation of chloride channels from the human syncytiotrophoblast microvillous membrane to Xenopus oocytes. Pflugers Archiv European Journal of Physiology, 2002, 444, 685-691.	2.8	8
25	Structural and Functional Changes Induced in the Nicotinic Acetylcholine Receptor by Membrane Phospholipids. Journal of Molecular Neuroscience, 2006, 30, 121-124.	2.3	7
26	Nicotinic Acetylcholine Receptor Properties are Modulated by Surrounding Lipids: An In Vivo Study. Journal of Molecular Neuroscience, 2006, 30, 5-6.	2.3	7
27	Peimine, an Anti-Inflammatory Compound from Chinese Herbal Extracts, Modulates Muscle-Type Nicotinic Receptors. International Journal of Molecular Sciences, 2021, 22, 11287.	4.1	7
28	Differential interactions of gentamicin with mouse junctional and extrajunctional ACh receptors expressed in Xenopus oocytes. Molecular Brain Research, 1994, 21, 99-106.	2.3	6
29	Muscle-Type Nicotinic Receptor Blockade by Diethylamine, the Hydrophilic Moiety of Lidocaine. Frontiers in Molecular Neuroscience, 2016, 9, 12.	2.9	6
30	Muscle-Type Nicotinic Receptor Modulation by 2,6-Dimethylaniline, a Molecule Resembling the Hydrophobic Moiety of Lidocaine. Frontiers in Molecular Neuroscience, 2016, 9, 127.	2.9	6
31	Mechanisms Underlying the Strong Inhibition of Muscle-Type Nicotinic Receptors by Tetracaine. Frontiers in Molecular Neuroscience, 2018, 11, 193.	2.9	6
32	Quaternary Ammonium Anticholinesterases Have Different Effects on Nicotinic Receptors: Is There a Single Binding Site?. Journal of Molecular Neuroscience, 2006, 30, 205-208.	2.3	5
33	Functional incorporation of exogenous proteins into the Xenopus oocyte membrane does not depend on intracellular calcium increase. Pflugers Archiv European Journal of Physiology, 2000, 440, 852-857.	2.8	4
34	Mechanisms of Blockade of the Muscle-Type Nicotinic Receptor by Benzocaine, a Permanently Uncharged Local Anesthetic. Neuroscience, 2020, 439, 62-79.	2.3	4
35	(31) BW284c51 blocks nicotinic acetylcholine receptors transplanted to Xenopus oocytes. Chemico-Biological Interactions, 2005, 157-158, 404-406.	4.0	2

Pharmacology of Muscle-Type Nicotinic Receptors. , 2019, , 267-276.

0