
Pau Carazo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3125894/publications.pdf Version: 2024-02-01

ΡΑΠ CARAZO

#	Article	IF	CITATIONS
1	Kin recognition in <i>Drosophila</i> : rearing environment and relatedness can modulate gut microbiota and cuticular hydrocarbon odour profiles. Oikos, 2022, 2022, .	1.2	3
2	No evidence that relatedness or familiarity modulates male harm in <i>Drosophila melanogaster</i> flies from a wild population. Ecology and Evolution, 2022, 12, e8803.	0.8	2
3	Male Adaptive Plasticity Can Explain the Evolution of Sexual Perception Costs. American Naturalist, 2022, 200, E110-E123.	1.0	4
4	Perception of dead conspecifics increases reproductive investment in fruit flies. Functional Ecology, 2022, 36, 1834-1844.	1.7	4
5	No evidence for differential sociosexual behavior and space use in the color morphs of the European common wall lizard (Podarcis muralis). Ecology and Evolution, 2020, 10, 10986-11005.	0.8	12
6	Temperature as a modulator of sexual selection. Biological Reviews, 2020, 95, 1607-1629.	4.7	69
7	Conditionâ€dependent mortality exacerbates male (but not female) reproductive senescence and the potential for sexual conflict. Journal of Evolutionary Biology, 2020, 33, 1086-1096.	0.8	5
8	Kin discrimination and demography modulate patterns of sexual conflict. Nature Ecology and Evolution, 2020, 4, 1141-1148.	3.4	12
9	Sex ratio at mating does not modulate age fitness effects in <i>Drosophila melanogaster</i> . Ecology and Evolution, 2019, 9, 6501-6507.	0.8	5
10	The ecology of sexual conflict: Temperature variation in the social environment can drastically modulate male harm to females. Functional Ecology, 2019, 33, 681-692.	1.7	31
11	The "unguarded-X―and the genetic architecture of lifespan: Inbreeding results in a potentially maladaptive sex-specific reduction of female lifespan inDrosophila melanogaster. Evolution; International Journal of Organic Evolution, 2018, 72, 540-552.	1.1	16
12	Interactions between the sexual identity of the nervous system and the social environment mediate lifespan in <i>Drosophila melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2018, 285, .	1.2	10
13	Ageing via perception costs of reproduction magnifies sexual selection. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182136.	1.2	7
14	Chemosensory enrichment as a simple and effective way to improve the welfare of captive lizards. Ethology, 2018, 124, 674-683.	0.5	11
15	Why blue tongue? A potential UV-based deimatic display in a lizard. Behavioral Ecology and Sociobiology, 2018, 72, 1.	0.6	16
16	Colour patch size and measurement error using reflectance spectrophotometry. Methods in Ecology and Evolution, 2017, 8, 1585-1593.	2.2	18
17	Digest: Chemical communication and sexual selection in lizards*. Evolution; International Journal of Organic Evolution, 2017, 71, 2535-2536.	1.1	2
18	Male relatedness and familiarity are required to modulate male-induced harm to females in <i>Drosophila</i> . Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170441.	1.2	24

Pau Carazo

#	Article	IF	CITATIONS
19	Experimental contact zones reveal causes and targets of sexual selection in hybridizing lizards. Functional Ecology, 2017, 31, 742-752.	1.7	30
20	Perception costs of reproduction can magnify sexual selection. Nature Ecology and Evolution, 2017, 1, 1414-1415.	3.4	6
21	Insulin signalling mediates the response to male-induced harm in female Drosophila melanogaster. Scientific Reports, 2016, 6, 30205.	1.6	10
22	Inbreeding removes sex differences in lifespan in a population of <i>Drosophila melanogaster</i> . Biology Letters, 2016, 12, 20160337.	1.0	27
23	Related male <i><scp>D</scp>rosophila melanogaster</i> reared together as larvae fight less and sire longer lived daughters. Ecology and Evolution, 2015, 5, 2787-2797.	0.8	25
24	Sexual selection drives asymmetric introgression in wall lizards. Ecology Letters, 2015, 18, 1366-1375.	3.0	88
25	Aggressive mimicry coexists with mutualism in an aphid. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1101-1106.	3.3	28
26	Inclusive fitness and sexual conflict: How population structure can modulate the battle of the sexes. BioEssays, 2015, 37, 155-166.	1.2	50
27	Sex and boldness explain individual differences in spatial learning in a lizard. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133275.	1.2	98
28	Colours of quality: structural (but not pigment) coloration informs about male quality in a polychromatic lizard. Animal Behaviour, 2014, 90, 73-81.	0.8	76
29	Within-group male relatedness reduces harm to females in Drosophila. Nature, 2014, 505, 672-675.	13.7	73
30	â€~Communication breakdown': the evolution of signal unreliability and deception. Animal Behaviour, 2014, 87, 17-22.	0.8	17
31	Color-assortative mating in a color-polymorphic lacertid lizard. Behavioral Ecology, 2013, 24, 273-279.	1.0	80
32	Learning outdoors: male lizards show flexible spatial learning under semi-natural conditions. Biology Letters, 2012, 8, 946-948.	1.0	49
33	Predator-elicited foot shakes in wall lizards (Podarcis muralis): Evidence for a pursuit-deterrent function Journal of Comparative Psychology (Washington, D C: 1983), 2012, 126, 87-96.	0.3	27
34	"Predator-elicited foot shakes in wall lizards (Podarcis muralis): Evidence for a pursuit-deterrent function": Correction to Font, Carazo, Pérez i de Lanuza, and Kramer (2012) Journal of Comparative Psychology (Washington, D C: 1983), 2012, 126, 169-169.	0.3	1
35	Quantity Estimation Based on Numerical Cues in the Mealworm Beetle (Tenebrio molitor). Frontiers in Psychology, 2012, 3, 502.	1.1	30
36	Social behavior, chemical communication, and adult neurogenesis: Studies of scent mark function in Podarcis wall lizards. General and Comparative Endocrinology, 2012, 177, 9-17.	0.8	50

Pau Carazo

#	Article	IF	CITATIONS
37	The role of scent marks in female choice of territories and refuges in a lizard (Podarcis hispanica) Journal of Comparative Psychology (Washington, D C: 1983), 2011, 125, 362-365.	0.3	14
38	Male reproductive senescence as a potential source of sexual conflict in a beetle. Behavioral Ecology, 2011, 22, 192-198.	1.0	19
39	Animals in translation: why there is meaning (but probably no message) in animal communication. Animal Behaviour, 2010, 80, e1-e6.	0.8	37
40	Putting information back into biological communication. Journal of Evolutionary Biology, 2010, 23, 661-669.	0.8	60
41	Impact of human disturbance and beliefs on the tree agama Acanthocercus atricollis atricollis in a South African communal settlement. Oryx, 2009, 43, 586.	0.5	4
42	Quantity discrimination in Tenebrio molitor: evidence of numerosity discrimination in an invertebrate?. Animal Cognition, 2009, 12, 463-470.	0.9	73
43	Beyond â€~nasty neighbours' and â€~dear enemies'? Individual recognition by scent marks in a lizard (Podarcis hispanica). Animal Behaviour, 2008, 76, 1953-1963.	0.8	111
44	Chemosensory assessment of sperm competition levels and the evolution of internal spermatophore guarding. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 261-267.	1.2	38
45	AGONISTIC INTERACTIONS IN A LIOLAEMUS LIZARD: STRUCTURE OF HEAD BOB DISPLAYS. Herpetologica, 2007, 63, 11-18.	0.2	24
46	Chemosensory assessment of rival competitive ability and scent-mark function in a lizard, Podarcis hispanica. Animal Behaviour, 2007, 74, 895-902.	0.8	74
47	Chemosensory cues allow male Tenebrio molitor beetles to assess the reproductive status of potential mates. Animal Behaviour, 2004, 68, 123-129.	0.8	81