List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3125681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boundary slip in Newtonian liquids: a review of experimental studies. Reports on Progress in Physics, 2005, 68, 2859-2897.	20.1	946
2	Semi-metallic polymers. Nature Materials, 2014, 13, 190-194.	27.5	722
3	Polymeric Material with Metal-Like Conductivity for Next Generation Organic Electronic Devices. Chemistry of Materials, 2012, 24, 3998-4003.	6.7	224
4	Condensation and freezing of droplets on superhydrophobic surfaces. Advances in Colloid and Interface Science, 2014, 210, 47-57.	14.7	223
5	Significant Electronic Thermal Transport in the Conducting Polymer Poly(3,4â€ethylenedioxythiophene). Advanced Materials, 2015, 27, 2101-2106.	21.0	176
6	Acido-basic control of the thermoelectric properties of poly(3,4-ethylenedioxythiophene)tosylate (PEDOT-Tos) thin films. Journal of Materials Chemistry C, 2015, 3, 10616-10623.	5.5	147
7	Recent advances in the synthesis of conducting polymers from the vapour phase. Progress in Materials Science, 2017, 86, 127-146.	32.8	115
8	Vacuum vapour phase polymerization of high conductivity PEDOT: Role of PEG-PPG-PEG, the origin of water, and choice of oxidant. Polymer, 2012, 53, 2146-2151.	3.8	88
9	Structure-directed growth of high conductivity PEDOT from liquid-like oxidant layers during vacuum vapor phase polymerization. Journal of Materials Chemistry, 2012, 22, 14889.	6.7	84
10	Inkjet printing and vapor phase polymerization: patterned conductive PEDOT for electronic applications. Journal of Materials Chemistry C, 2013, 1, 3353.	5.5	56
11	Charge transport and structure in semimetallic polymers. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 97-104.	2.1	53
12	The hydrophobic force: nanobubbles or polymeric contaminant?. Physica A: Statistical Mechanics and Its Applications, 2004, 339, 101-105.	2.6	48
13	Poly(ionic liquid) iongels for all-solid rechargeable zinc/PEDOT batteries. Electrochimica Acta, 2018, 278, 271-278.	5.2	47
14	Ultrathin Polymer Films for Transparent Electrode Applications Prepared by Controlled Nucleation. ACS Applied Materials & Interfaces, 2013, 5, 11654-11660.	8.0	43
15	The effect of surfactant adsorption on liquid boundary slippage. Physica A: Statistical Mechanics and Its Applications, 2004, 339, 60-65.	2.6	38
16	Sensing Cantilever Beam Bending by the Optical Lever Technique and Its Application to Surface Stress. Journal of Physical Chemistry B, 2006, 110, 5450-5461.	2.6	36
17	Metal-free oxygen reduction electrodes based on thin PEDOT films with high electrocatalytic activity. RSC Advances, 2014, 4, 9819.	3.6	34
18	Physical Properties of Phase-Change Emulsions. Langmuir, 2006, 22, 9538-9545.	3.5	32

#	Article	IF	CITATIONS
19	Evidence for â€~bottom up' growth during vapor phase polymerization of conducting polymers. Polymer, 2014, 55, 3458-3460.	3.8	32
20	Patterning and Conductivity Modulation of Conductive Polymers by UV Light Exposure. Advanced Functional Materials, 2016, 26, 6950-6960.	14.9	31
21	Stable Deep Doping of Vaporâ€Phase Polymerized Poly(3,4â€ethylenedioxythiophene)/Ionic Liquid Supercapacitors. ChemSusChem, 2016, 9, 2112-2121.	6.8	30
22	Inorganic Thin Film Deposition and Application on Organic Polymer Substrates. Advanced Engineering Materials, 2018, 20, 1700868.	3.5	29
23	Selective uptake and sensing of nitrate in poly(3,4-ethylenedioxythiophene). Scientific Reports, 2017, 7, 16581.	3.3	27
24	Vapor Phase Synthesis of Conducting Polymer Nanocomposites Incorporating 2D Nanoparticles. Chemistry of Materials, 2014, 26, 4207-4213.	6.7	26
25	Laser Actuation of Cantilevers for Picometre Amplitude Dynamic Force Microscopy. Scientific Reports, 2014, 4, 5567.	3.3	25
26	Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications. Smart Materials and Structures, 2015, 24, 035016.	3.5	24
27	Hydrophilic Organic Electrodes on Flexible Hydrogels. ACS Applied Materials & Interfaces, 2016, 8, 974-982.	8.0	23
28	Conducting polymers in wearable devices. Medical Devices & Sensors, 2021, 4, e10160.	2.7	20
29	Diffuse color patterning using blended electrochromic polymers for proofâ€ofâ€concept adaptive camouflage plaques. Journal of Applied Polymer Science, 2015, 132, .	2.6	19
30	Hydrolysis of doped conducting polymers. Communications Chemistry, 2020, 3, .	4.5	19
31	Extending the Utility of Conducting Polymers through Chemisorption of Nucleophiles. Chemistry of Materials, 2013, 25, 1837-1841.	6.7	18
32	Enhancing the morphology and electrochromic stability of polypyrrole via PEG–PPG–PEG templating in vapour phase polymerisation. European Polymer Journal, 2014, 51, 28-36.	5.4	18
33	3-Dimensionally ordered macroporous PEDOT ion-exchange resins prepared by vapor phase polymerization for triggered drug delivery: Fabrication and characterization. Electrochimica Acta, 2018, 269, 560-570.	5.2	17
34	Experimental Studies of the Dynamic Mechanical Response of a Single Polymer Chain. Macromolecules, 2006, 39, 6180-6185.	4.8	16
35	Organic energy devices from ionic liquids and conducting polymers. Journal of Materials Chemistry C, 2016, 4, 1550-1556.	5.5	15
36	Abrasion resistance of thin film coatings as measured by diffuse optical scattering. Surface and Coatings Technology, 2011, 206, 312-317.	4.8	14

#	Article	IF	CITATIONS
37	Corrosion resistance of robust optical and electrical thin film coatings on polymeric substrates. Corrosion Science, 2013, 69, 406-411.	6.6	14
38	Aqueous processing of graphene–polymer hybrid thin film nano-composites and gels. Advances in Colloid and Interface Science, 2014, 209, 196-203.	14.7	13
39	One‣tep Fabrication of Nanocomposite Thin Films of PTFE in SiO <i>_x</i> for Repelling Water. Advanced Engineering Materials, 2015, 17, 474-482.	3.5	13
40	Ultrathin films of co-sputtered CrZrx alloys on polymeric substrates. Surface and Coatings Technology, 2012, 206, 3733-3738.	4.8	12
41	Macroscopic Electrical Wires from Vapor Deposited Poly(3,4-ethylenedioxythiophene). ACS Applied Materials & Interfaces, 2017, 9, 65-70.	8.0	12
42	Understanding PEDOT doped with tosylate. Chemical Communications, 2022, 58, 4553-4560.	4.1	12
43	Enhanced abrasion resistance of ultrathin reflective coatings on polymeric substrates: An improvement upon glass substrates. Wear, 2013, 297, 986-991.	3.1	11
44	Surface Force Measurements between Titanium Dioxide Surfaces Prepared by Atomic Layer Deposition in Electrolyte Solutions Reveal Non-DLVO Interactions: Influence of Water and Argon Plasma Cleaning. Langmuir, 2014, 30, 2093-2100.	3.5	11
45	Atomic structure studies of chrome alloy coatings and their abrasion resistance. Surface and Coatings Technology, 2012, 206, 3645-3649.	4.8	10
46	Observation of electron transfer between bacteria and high conductivity graphene–PEDOT composites. RSC Advances, 2015, 5, 45642-45645.	3.6	10
47	Unusual Nature of Fingerprints and the Implications for Easy-to-Clean Coatings. Langmuir, 2016, 32, 619-625.	3.5	10
48	Packing density/surface morphology relationship in thin sputtered chromium films. Surface and Coatings Technology, 2016, 291, 286-291.	4.8	10
49	Structural Control of Charge Storage Capacity to Achieve 100% Doping in Vapor Phase-Polymerized PEDOT/Tosylate. ACS Omega, 2019, 4, 21818-21826.	3.5	10
50	Relationship between structure/properties of vapour deposited PEDOT and sensitivity to passive nitrate doping. Sensors and Actuators B: Chemical, 2019, 281, 582-587.	7.8	10
51	The Origin of Surface Stress Induced by Adsorption of Iodine on Gold. Journal of Physical Chemistry B, 2006, 110, 19507-19514.	2.6	9
52	Nanoporous Glass Films on Liquids. ACS Applied Materials & amp; Interfaces, 2014, 6, 507-512.	8.0	9
53	The effect of block copolymer additives for a highly active polymeric metal-free oxygen reduction electrode. RSC Advances, 2016, 6, 28809-28814.	3.6	9
54	Influence of post-deposition moisture uptake in polycarbonate on thin film's residual stress short term evolution. Surface and Coatings Technology, 2016, 294, 210-214.	4.8	9

#	Article	IF	CITATIONS
55	Metallic Adhesive Layers for Agâ€Based First Surface Mirrors. Advanced Engineering Materials, 2018, 20, 1800106.	3.5	9
56	A bird's eye view of the synthesis and practical application of conducting polymers. Polymer International, 2018, 67, 351-355.	3.1	9
57	Influence of Postsynthesis Heat Treatment on Vapor-Phase-Polymerized Conductive Polymers. ACS Omega, 2018, 3, 12679-12687.	3.5	9
58	Recent advances in ion sensing with conducting polymers. BMC Materials, 2019, 1, .	6.8	9
59	Electrochemical stability of <scp>PEDOT</scp> for wearable <scp>onâ€skin</scp> application. Journal of Applied Polymer Science, 2021, 138, 51314.	2.6	8
60	Postâ€polymerization surface segregation in thin PECVD siloxane films leading to a selfâ€regenerative effect. Plasma Processes and Polymers, 2017, 14, 1600233.	3.0	7
61	Charge Transport in Nonstoichiometric 2-Fluoropyridinium Triflate Protic Ionic Liquids. Journal of Physical Chemistry C, 2019, 123, 23427-23432.	3.1	7
62	A Fibre-Optic Platform for Sensing Nitrate Using Conducting Polymers. Sensors, 2021, 21, 138.	3.8	7
63	Market evaluation, performance modelling and materials solution addressing short wavelength discomfort glare in rear view automotive mirrors. Translational Materials Research, 2015, 2, 035002.	1.2	6
64	Diffusion controlled vapour deposition of mixed doped PEDOT. Synthetic Metals, 2018, 242, 61-66.	3.9	6
65	<scp>G</scp> rowth of Sputtered Nanocomposite Alloys on Polymeric Substrates: The Role of the Substrate's Mechanical Hardness. Advanced Engineering Materials, 2013, 15, 1076-1081.	3.5	5
66	Mesoporous Siloxane Films Through Thermal Oxidation of Siloxane–Carbon Nanocomposites. Advanced Engineering Materials, 2015, 17, 1547-1555.	3.5	5
67	Decoupling the effects of confinement and passivation on semiconductor quantum dots. Physical Chemistry Chemical Physics, 2016, 18, 19765-19772.	2.8	5
68	Interfacial Forces at Layered Surfaces: Substrate Electrical Double-Layer Forces Acting through Ultrathin Polymer Coatings. Langmuir, 2019, 35, 11679-11689.	3.5	5
69	The switch is on. Nature Nanotechnology, 2020, 15, 7-8.	31.5	5
70	Structuring PEDOT Hollow Nanosphere Electrodes for High Specific Energy Li-Metal Polymer Thin-Film Batteries. ACS Applied Nano Materials, 2020, 3, 3820-3828.	5.0	5
71	Recent advances in the aqueous applications of PEDOT. Nanoscale Advances, 2022, 4, 733-741.	4.6	5
72	Chemical seeding via propanol plasma pretreatment for improving adhesion and properties of PECVD siloxane coatings on polymers. Plasma Processes and Polymers, 2017, 14, 1600106.	3.0	4

#	Article	IF	CITATIONS
73	Modulation of substrate van der Waals forces using varying thicknesses of polymer overlayers. Journal of Colloid and Interface Science, 2020, 580, 690-699.	9.4	4
74	Oxygenation of conducting polymers facilitated by structureâ€breaking anions. Journal of Polymer Science, 2021, 59, 745-753.	3.8	4
75	Adsorption of dispersants at a polyester resin–alkane interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 318-324.	4.7	3
76	Orbital hybridization, crystal structure and anomalous resistivity of ultrathin CrZr alloy films on polymeric substrates. Scripta Materialia, 2012, 67, 356-359.	5.2	3
77	Chemically Heterogeneous Nanowrinkling of Polymer Surfaces Induced by Low-Energy Cluster Implantation. Journal of Physical Chemistry C, 2019, 123, 13330-13336.	3.1	3
78	Anderson-like localization in ultrathin nanocomposite alloy films on polymeric substrates. Scripta Materialia, 2012, 67, 866-869.	5.2	2
79	Degradation and Gelation during Plasma Synthesis of Nanoparticles in Ionic Liquids. Journal of Physical Chemistry C, 2017, 121, 6349-6356.	3.1	2
80	Plasma gas aggregation cluster source: Influence of gas inlet configuration and total surface area on the heterogeneous aggregation of silicon clusters. Surface and Coatings Technology, 2019, 364, 1-6.	4.8	2
81	Large Area Nanostructured Arrays: Optical Properties of Metallic Nanotubes. ACS Applied Materials & Interfaces, 2013, 5, 3937-3942.	8.0	1