Marius Retegan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3125612/publications.pdf

Version: 2024-02-01

39	2,126	24	38
papers	citations	h-index	g-index
39	39	39	2833
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	XAS and XMCD Reveal a Cobalt(II) Imide Undergoes High-Pressure-Induced Spin Crossover. Journal of Physical Chemistry C, 2022, 126, 5784-5792.	1.5	4
2	2p x-ray absorption spectroscopy of 3d transition metal systems. Journal of Electron Spectroscopy and Related Phenomena, 2021, 249, 147061.	0.8	44
3	Demethylation of Methylmercury in Bird, Fish, and Earthworm. Environmental Science & Eamp; Technology, 2021, 55, 1527-1534.	4.6	61
4	Probing the Local Coordination of Hexavalent Uranium and the Splitting of 5f Orbitals Induced by Chemical Bonding. Inorganic Chemistry, 2021, 60, 16286-16293.	1.9	12
5	New reflections on hard X-ray photon-in/photon-out spectroscopy. Nanoscale, 2020, 12, 16270-16284.	2.8	21
6	Chemical Sensitivity of $K\hat{l}^2$ and $K\hat{l}^\pm$ X-ray Emission from a Systematic Investigation of Iron Compounds. Inorganic Chemistry, 2020, 59, 12518-12535.	1.9	55
7	Enhanced Sorption of Radionuclides by Defect-Rich Graphene Oxide. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45122-45135.	4.0	50
8	From an Enhanced Understanding to Commercially Viable Electrodes: The Case of PTCLi ₄ as Sustainable Organic Lithiumâ€lon Anode Material. Advanced Sustainable Systems, 2017, 1, 1600032.	2.7	31
9	Multilevel Approaches within the Local Pair Natural Orbital Framework. Journal of Chemical Theory and Computation, 2017, 13, 3198-3207.	2.3	38
10	A Highâ€Valent Nonâ€Heme μâ€Oxo Manganese(IV) Dimer Generated from a Thiolateâ€Bound Manganese(II) Complex and Dioxygen. Angewandte Chemie - International Edition, 2017, 56, 8211-8215.	7.2	29
11	Differences in the Active Site of Water Oxidation among Photosynthetic Organisms. Journal of the American Chemical Society, 2017, 139, 14340-14343.	6.6	31
12	Time-Resolved Electron Paramagnetic Resonance and Theoretical Investigations of Metal-Free Room-Temperature Triplet Emitters. Journal of the American Chemical Society, 2017, 139, 12968-12975.	6.6	24
13	A Highâ€Valent Nonâ€Heme μâ€Oxo Manganese(IV) Dimer Generated from a Thiolateâ€Bound Manganese(II) Complex and Dioxygen. Angewandte Chemie, 2017, 129, 8323-8327.	1.6	10
14	Possibility to realize spin-orbit-induced correlated physics in iridium fluorides. Physical Review B, 2017, 95, .	1.1	15
15	Interaction of methanol with the oxygen-evolving complex: atomistic models, channel identification, species dependence, and mechanistic implications. Chemical Science, 2016, 7, 6463-6476.	3.7	47
16	Effect of Conjugation Pathway in Metal-Free Room-Temperature Dual Singlet–Triplet Emitters for Organic Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2016, 7, 4802-4808.	2.1	42
17	A realistic in silico model for structure/function studies of molybdenum–copper CO dehydrogenase. Journal of Biological Inorganic Chemistry, 2016, 21, 491-499.	1.1	21
18	A five-coordinate Mn(<scp>iv</scp>) intermediate in biological water oxidation: spectroscopic signature and a pivot mechanism for water binding. Chemical Science, 2016, 7, 72-84.	3.7	158

#	Article	IF	Citations
19	Spin State as a Marker for the Structural Evolution of Nature's Water-Splitting Catalyst. Inorganic Chemistry, 2016, 55, 488-501.	1.9	87
20	Metal oxidation states in biological water splitting. Chemical Science, 2015, 6, 1676-1695.	3.7	275
21	Dioxygen Activation and Catalytic Reduction to Hydrogen Peroxide by a Thiolate-Bridged Dimanganese(II) Complex with a Pendant Thiol. Journal of the American Chemical Society, 2015, 137, 8644-8653.	6.6	56
22	Principles of Natural Photosynthesis. Topics in Current Chemistry, 2015, 371, 23-48.	4.0	51
23	Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions. Journal of Physical Chemistry B, 2015, 119, 15075-15088.	1.2	109
24	The iron–sulfur core in Rieske proteins is not symmetric. Journal of Biological Inorganic Chemistry, 2014, 19, 1287-1293.	1.1	4
25	Structure, ligands and substrate coordination of the oxygen-evolving complex of photosystem II in the S2 state: a combined EPR and DFT study. Physical Chemistry Chemical Physics, 2014, 16, 11877.	1.3	77
26	The first tyrosyl radical intermediate formed in the S2–S3 transition of photosystem II. Physical Chemistry Chemical Physics, 2014, 16, 11901.	1.3	68
27	A First-Principles Approach to the Calculation of the on-Site Zero-Field Splitting in Polynuclear Transition Metal Complexes. Inorganic Chemistry, 2014, 53, 11785-11793.	1.9	32
28	Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation. Science, 2014, 345, 804-808.	6.0	432
29	Convergence of QM/MM and Cluster Models for the Spectroscopic Properties of the Oxygen-Evolving Complex in Photosystem II. Journal of Chemical Theory and Computation, 2013, 9, 3832-3842.	2.3	54
30	A combined high-field EPR and quantum chemical study on a weakly ferromagnetically coupled dinuclear Mn(<scp>iii</scp>) complex. A complete analysis of the EPR spectrum beyond the strong coupling limit. Physical Chemistry Chemical Physics, 2013, 15, 223-234.	1.3	21
31	Azurin as a Protein Scaffold for a Low-coordinate Nonheme Iron Site with a Small-molecule Binding Pocket. Journal of the American Chemical Society, 2012, 134, 19746-19757.	6.6	33
32	Visibleâ€Lightâ€Driven Generation of Highâ€Valent Oxoâ€Bridged Dinuclear and Tetranuclear Manganese Terpyridine Entities Linked to Photoactive Ruthenium Units of Relevance to Photosystem II. European Journal of Inorganic Chemistry, 2012, 2012, 5485-5499.	1.0	6
33	Redoxâ€Responsive Porphyrinâ€Based Molecular Tweezers. Chemistry - A European Journal, 2012, 18, 7648-7653.	1.7	48
34	Experimental and Computational Investigation of Thiolate Alkylation in Ni ^{II} and Zn ^{II} Complexes: Role of the Metal on the Sulfur Nucleophilicity. Inorganic Chemistry, 2011, 50, 10047-10055.	1.9	22
35	Electrochemical formation of bi- versus tetranuclear \hat{l} /4-oxo terpyridine manganese complexes in CH3CN. Influence of the terpyridine substituents. Inorganica Chimica Acta, 2011, 374, 187-196.	1.2	6
36	MESP: An efficient method to validate an ONIOM partition for the modelization of phosphine ligands commonly used in the Pauson–Khand reaction. Computational and Theoretical Chemistry, 2011, 965, 231-235.	1.1	0

#	Article	IF	CITATIONS
37	Comparative Theoretical Studies of the Phosphomonoester Hydrolysis Mechanism by Purple Acid Phosphatases. Journal of Physical Chemistry A, 2010, 114, 7110-7116.	1.1	6
38	Free energy calculations using dual-level Born–Oppenheimer molecular dynamics. Journal of Chemical Physics, 2010, 133, 064103.	1.2	22
39	Exploring the Binding of Inhibitors Derived from Tetrabromobenzimidazole to the CK2 Protein Using a QM/MM-PB/SA Approach. Journal of Chemical Information and Modeling, 2009, 49, 963-971.	2.5	24