List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3125575/publications.pdf Version: 2024-02-01

		39113	46524
127	9,235	52	93
papers	citations	h-index	g-index
133	133	133	9872
all docs	docs citations	times ranked	citing authors

FENC 7HAO

#	Article	IF	CITATIONS
1	Proteomic analysis of the electron uptake pathway of Rhodopseudomonas palustris CGA009 under different cathodic potentials. Process Biochemistry, 2022, 115, 42-48.	1.8	2
2	Feedback current production by a ferrous mediator revealing the redox properties of Shewanella oneidensis MR-1. Journal of Electroanalytical Chemistry, 2022, 916, 116387.	1.9	2
3	Synthesis and Structure of a Two-Dimensional Palladium Oxide Network on Reduced Graphene Oxide. Nano Letters, 2022, 22, 4854-4860.	4.5	3
4	Enhanced interfacial electron transfer between semiconductor and non-photosynthetic microorganism under visible light. Bioelectrochemistry, 2022, , 108195.	2.4	3
5	Redox cycling of manganese by Bacillus horikoshii biET1 via oxygen switch. Electrochimica Acta, 2021, 375, 137963.	2.6	9
6	Liposoluble quinone promotes the reduction of hydrophobic mineral and extracellular electron transfer of Shewanella oneidensis MR-1. Innovation(China), 2021, 2, 100104.	5.2	10
7	Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems. Applied Energy, 2021, 292, 116885.	5.1	20
8	In situ role of extracellular polymeric substances in microbial electron transfer by Methylomonas sp. LW13. Fundamental Research, 2021, 1, 735-741.	1.6	10
9	Degradation of low-concentration perfluorooctanoic acid via a microbial-based synergistic method: assessment of the feasibility and functional microorganisms. Journal of Hazardous Materials, 2021, 416, 125857.	6.5	17
10	Functional role of mixed-culture microbe in photocatalysis coupled with biodegradation: Total organic carbon removal of ciprofloxacin. Science of the Total Environment, 2021, 784, 147049.	3.9	44
11	Interspecific competition by non-exoelectrogenic Citrobacter freundii An1 boosts bioelectricity generation of exoelectrogenic Shewanella oneidensis MR-1. Biosensors and Bioelectronics, 2021, 194, 113614.	5.3	12
12	Long-term adaptive evolution of Shewanella oneidensis MR-1 for establishment of high concentration Cr(VI) tolerance. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	15
13	Degradation of diclofenac by B. subtilis through a cytochrome P450-dependent pathway. Environmental Technology and Innovation, 2020, 20, 101160.	3.0	7
14	Effect of Copper and Phosphate on the Biosynthesis of Palladium Nanoparticles by Shewanella oneidensis MRâ€1. ChemElectroChem, 2020, 7, 4460-4468.	1.7	2
15	Acceleration of peroxymonosulfate decomposition by a magnetic MoS2/CuFe2O4 heterogeneous catalyst for rapid degradation of fluoxetine. Chemical Engineering Journal, 2020, 397, 125501.	6.6	119
16	Extracellular electron transfer of Methylophilus methylotrophs. Process Biochemistry, 2020, 94, 313-318.	1.8	12
17	Methane-Dependent Mineral Reduction by Aerobic Methanotrophs under Hypoxia. Environmental Science and Technology Letters, 2020, 7, 606-612.	3.9	52
18	Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement. Nature Communications, 2020, 11, 1379.	5.8	97

#	Article	IF	CITATIONS
19	Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME Journal, 2020, 14, 2595-2609.	4.4	62
20	Recovery of solid waste as functional heterogeneous catalysts for organic pollutant removal and biodiesel production. Chemical Engineering Journal, 2020, 401, 126104.	6.6	51
21	Bacterially Generated Nanocatalysts and Their Applications. ACS Symposium Series, 2020, , 97-122.	0.5	2
22	Rapid and efficient removal of naproxen from water by CuFe2O4 with peroxymonosulfate. Environmental Science and Pollution Research, 2020, 27, 21542-21551.	2.7	24
23	Antibiotic resistance genes are increased by combined exposure to sulfamethoxazole and naproxen but relieved by low-salinity. Environment International, 2020, 139, 105742.	4.8	28
24	Electrons selective uptake of a metal-reducing bacterium Shewanella oneidensis MR-1 from ferrocyanide. Biosensors and Bioelectronics, 2019, 142, 111571.	5.3	13
25	Redox-active humics support interspecies syntrophy and shift microbial community. Science China Technological Sciences, 2019, 62, 1695-1702.	2.0	12
26	Proteomic analysis of the reduction and resistance mechanisms of Shewanella oneidensis MR-1 under long-term hexavalent chromium stress. Environment International, 2019, 127, 94-102.	4.8	69
27	Bioleaching of Electronic Waste Using Extreme Acidophiles. , 2019, , 153-174.		12
28	Electron Communication of Bacillus subtilis in Harsh Environments. IScience, 2019, 12, 260-269.	1.9	27
29	Long-term operation of electroactive biofilms for enhanced ciprofloxacin removal capacity and anti-shock capabilities. Bioresource Technology, 2019, 275, 192-199.	4.8	36
30	Leaching of indium from end-of-life LCD panels via catalysis by synergistic microbial communities. Science of the Total Environment, 2019, 655, 781-786.	3.9	23
31	The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: A review. Chemical Engineering Journal, 2019, 358, 1421-1437.	6.6	230
32	Application of interface material and effects of oxygen gradient on the performance of single-chamber sediment microbial fuel cells (SSMFCs). Journal of Environmental Sciences, 2019, 75, 163-168.	3.2	15
33	Research on Electron Transfer in the Microenvironment of the Biofilm by Scanning Electrochemical Microscopy. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 22-27.	2.2	4
34	Selective electrocatalysis of biofuel molecular oxidation using palladium nanoparticles generated on <i>Shewanella oneidensis</i> MR-1. Journal of Materials Chemistry A, 2018, 6, 10655-10662.	5.2	35
35	Physiological Effect of XoxG(4) on Lanthanide-Dependent Methanotrophy. MBio, 2018, 9, .	1.8	54
36	Novel bufferless photosynthetic microbial fuel cell (PMFCs) for enhanced electrochemical performance. Bioresource Technology, 2018, 255, 83-87.	4.8	45

#	Article	IF	CITATIONS
37	Flavins mediate extracellular electron transfer in Gram-positive Bacillus megaterium strain LLD-1. Bioelectrochemistry, 2018, 119, 196-202.	2.4	61
38	Anoxic biodegradation of triclosan and the removal of its antimicrobial effect in microbial fuel cells. Journal of Hazardous Materials, 2018, 344, 669-678.	6.5	56
39	Framework of Cytochrome/Vitamin B ₂ Linker/Graphene for Robust Microbial Electricity Generation. ACS Applied Materials & Interfaces, 2018, 10, 35090-35098.	4.0	22
40	Leaching of vanadium from waste V2O5-WO3/TiO2 catalyst catalyzed by functional microorganisms. Science of the Total Environment, 2018, 639, 497-503.	3.9	27
41	Interactions between iron mineral-humic complexes and hexavalent chromium and the corresponding bio-effects. Environmental Pollution, 2018, 241, 265-271.	3.7	34
42	The changes of bacterial communities and antibiotic resistance genes in microbial fuel cells during long-term oxytetracycline processing. Water Research, 2018, 142, 105-114.	5.3	117
43	Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline. Water Research, 2018, 143, 589-598.	5.3	93
44	Sludge selection on the performance of sediment microbial fuel cells. International Journal of Energy Research, 2018, 42, 4250-4255.	2.2	15
45	Enhanced bioleaching efficiency of copper from printed circuit boards without iron loss. Hydrometallurgy, 2018, 180, 65-71.	1.8	18
46	Biodegradation of sulfadiazine in microbial fuel cells: Reaction mechanism, biotoxicity removal and the correlation with reactor microbes. Journal of Hazardous Materials, 2018, 360, 402-411.	6.5	73
47	Progress of air-breathing cathode in microbial fuel cells. Journal of Power Sources, 2017, 356, 245-255.	4.0	110
48	Interaction between in vivo bioluminescence and extracellular electron transfer in Shewanella woodyi via charge and discharge. Physical Chemistry Chemical Physics, 2017, 19, 1746-1750.	1.3	19
49	A concise review on microbial remediation cells (MRCs) in soil and groundwater radionuclides remediation. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 1477-1485.	0.7	14
50	Electrochemical roles of extracellular polymeric substances in biofilms. Current Opinion in Electrochemistry, 2017, 4, 206-211.	2.5	134
51	Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Science Advances, 2017, 3, e1700623.	4.7	439
52	Redox-Active Oxygen-Containing Functional Groups in Activated Carbon Facilitate Microbial Reduction of Ferrihydrite. Environmental Science & Technology, 2017, 51, 9709-9717.	4.6	113
53	Effect of electrode potentials on the microbial community of photo bioelectrochemical systems. World Journal of Microbiology and Biotechnology, 2017, 33, 149.	1.7	5
54	Nitrogen recovery from wastewater using microbial fuel cells. Frontiers of Environmental Science and Engineering, 2016, 10, 185-191.	3.3	34

#	Article	IF	CITATIONS
55	Effective methods for extracting extracellular polymeric substances from Shewanella oneidensis MR-1. Water Science and Technology, 2016, 74, 2987-2996.	1.2	34
56	Riboflavin-mediated extracellular electron transfer process involving Pachysolen tannophilus. Electrochimica Acta, 2016, 210, 117-121.	2.6	24
57	Performance of bioelectrochemical systems inoculated with Desmodesmus sp. A8 under different light sources. Bioremediation Journal, 2016, 20, 233-239.	1.0	4
58	Enhanced bioleaching efficiency of metals from E-wastes driven by biochar. Journal of Hazardous Materials, 2016, 320, 393-400.	6.5	66
59	Microbial synthesis of highly dispersed PdAu alloy for enhanced electrocatalysis. Science Advances, 2016, 2, e1600858.	4.7	85
60	Periodic polarity reversal for stabilizing the pH in two-chamber microbial electrolysis cells. Applied Energy, 2016, 165, 670-675.	5.1	42
61	The Remediation of Chromium (VI)-Contaminated Soils Using Microbial Fuel Cells. Soil and Sediment Contamination, 2016, 25, 1-12.	1.1	64
62	Rapid degradation of sulphamethoxazole and the further transformation of 3-amino-5-methylisoxazole in a microbial fuel cell. Water Research, 2016, 88, 322-328.	5.3	162
63	Pyrosequencing Reveals a Core Community of Anodic Bacterial Biofilms in Bioelectrochemical Systems from China. Frontiers in Microbiology, 2015, 6, 1410.	1.5	40
64	Bacterial Community Structure of Autotrophic Denitrification Biocathode by 454 Pyrosequencing of the 16S rRNA Gene. Microbial Ecology, 2015, 69, 492-499.	1.4	83
65	Efficient degradation of sulfamethoxazole and the response of microbial communities in microbial fuel cells. RSC Advances, 2015, 5, 56430-56437.	1.7	79
66	Carbonized textile with free-standing threads as an efficient anode material for bioelectrochemical systems. Journal of Power Sources, 2015, 287, 269-275.	4.0	22
67	Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. Journal of Power Sources, 2015, 284, 252-257.	4.0	102
68	Bacterial community composition at anodes of microbial fuel cells for paddy soils: the effects of soil properties. Journal of Soils and Sediments, 2015, 15, 926-936.	1.5	51
69	Encapsulation of a living bioelectrode by a hydrogel for bioelectrochemical systems in alkaline media. Journal of Materials Chemistry B, 2015, 3, 4641-4646.	2.9	10
70	Electrochemical in situ FTIR spectroscopy studies directly extracellular electron transfer of Shewanella oneidensis MR-1. Electrochimica Acta, 2015, 170, 131-139.	2.6	27
71	A role for biosynthetic CdS quantum dots in extracellular electron transfer of Saccharomyces cerevisiae. Process Biochemistry, 2015, 50, 2061-2065.	1.8	27
72	Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Science Advances, 2015, 1, e1500372.	4.7	209

#	Article	IF	CITATIONS
73	Cellulose-derived nitrogen and phosphorus dual-doped carbon as high performance oxygen reduction catalyst in microbial fuel cell. Journal of Power Sources, 2015, 273, 1189-1193.	4.0	106
74	Characterization of Exoelectrogenic Bacteria Enterobacter Strains Isolated from a Microbial Fuel Cell Exposed to Copper Shock Load. PLoS ONE, 2014, 9, e113379.	1.1	68
75	Comparative proteomics reveal the impact of OmcA/MtrC deletion on Shewanella oneidensis MR-1 in response to hexavalent chromium exposure. Applied Microbiology and Biotechnology, 2014, 98, 9735-9747.	1.7	20
76	Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism. Applied Energy, 2014, 116, 86-90.	5.1	102
77	Polarization behavior of microbial fuel cells under stack operation. Science Bulletin, 2014, 59, 2214-2220.	1.7	15
78	Ameliorating acidic soil using bioelectrochemistry systems. RSC Advances, 2014, 4, 62544-62549.	1.7	20
79	Extracellular Electron Transfer Mediated by Flavins in Gram-positive Bacillus sp. WS-XY1 and Yeast Pichia stipitis. Electrochimica Acta, 2014, 146, 564-567.	2.6	74
80	Phosphorus-doped carbon derived from cellulose phosphate as efficient catalyst for air-cathode in microbial fuel cells. Journal of Power Sources, 2014, 261, 245-248.	4.0	52
81	Conductive Carbon Nanotube Hydrogel as a Bioanode for Enhanced Microbial Electrocatalysis. ACS Applied Materials & Interfaces, 2014, 6, 8158-8164.	4.0	118
82	Abiotic Oxygen Reduction Reaction Catalysts Used in Microbial Fuel Cells. ChemElectroChem, 2014, 1, 1813-1821.	1.7	108
83	The bacterial communities of bioelectrochemical systems associated with the sulfate removal under different pHs. Process Biochemistry, 2014, 49, 1345-1351.	1.8	52
84	Factors Affecting the Performance of Single-Chamber Soil Microbial Fuel Cells for Power Generation. Pedosphere, 2014, 24, 330-338.	2.1	92
85	Electrocatalytic activity of carbon nanoparticles from diffusion flame towards oxygen reduction. Electrochimica Acta, 2014, 136, 176-181.	2.6	9
86	Experimental and Theoretical Demonstrations for the Mechanism behind Enhanced Microbial Electron Transfer by CNT Network. Scientific Reports, 2014, 4, 3732.	1.6	42
87	Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption. Energy and Environmental Science, 2013, 6, 2435.	15.6	275
88	Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells. Bioresource Technology, 2013, 144, 74-79.	4.8	84
89	Effect of pH on sulfate removal from wastewater using a bioelectrochemical system. Chemical Engineering Journal, 2013, 218, 147-153.	6.6	71
90	In situ measurements of dissolved oxygen, pH and redox potential of biocathode microenvironments using microelectrodes. Bioresource Technology, 2013, 132, 387-390.	4.8	42

#	Article	IF	CITATIONS
91	Sulfur Pollutants Treatment Using Microbial Fuel Cells from Perspectives of Electrochemistry and Microbiology. Chinese Journal of Analytical Chemistry, 2013, 41, 1133-1139.	0.9	12
92	In situ probing the effect of potentials on the microenvironment of heterotrophic denitrification biofilm with microelectrodes. Chemosphere, 2013, 93, 1295-1300.	4.2	31
93	Promoting electrogenic ability of microbes with negative pressure. Journal of Power Sources, 2013, 229, 79-83.	4.0	19
94	Phenothiazine Derivative-Accelerated Microbial Extracellular Electron Transfer in Bioelectrochemical System. Scientific Reports, 2013, 3, 1616.	1.6	30
95	Effects of Bio-Au Nanoparticles on Electrochemical Activity of Shewanella oneidensis Wild Type and ΔomcA/mtrC Mutant. Scientific Reports, 2013, 3, 3307.	1.6	52
96	Isolation, Identification and Characterization of an Electrogenic Microalgae Strain. PLoS ONE, 2013, 8, e73442.	1.1	33
97	Removal of Ethylene and Secondary Organic Aerosols Using UV-C254 + 185 nm with TiO2 Catalyst. Aerosol and Air Quality Research, 2013, 13, 618-626.	0.9	27
98	Sulfur Pollutants Treatment Using Microbial Fuel Cells from Perspectives of Electrochemistry and Microbiology. Chinese Journal of Analytical Chemistry, 2013, 41, 1133.	0.9	1
99	Energy from Plants and Microorganisms: Progress in Plant–Microbial Fuel Cells. ChemSusChem, 2012, 5, 1006-1011.	3.6	90
100	A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresource Technology, 2012, 108, 55-59.	4.8	128
101	Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose. Applied Microbiology and Biotechnology, 2012, 93, 423-437.	1.7	79
102	A Role for Microbial Palladium Nanoparticles in Extracellular Electron Transfer. Angewandte Chemie - International Edition, 2011, 50, 427-430.	7.2	121
103	Comparative study on the performance of pyrolyzed and plasma-treated iron(II) phthalocyanine-based catalysts for oxygen reduction in pH neutral electrolyte solutions. Journal of Power Sources, 2009, 193, 86-92.	4.0	54
104	Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. Biosensors and Bioelectronics, 2009, 24, 1931-1936.	5.3	114
105	A one-compartment fructose/air biological fuel cell based on direct electron transfer. Biosensors and Bioelectronics, 2009, 25, 326-331.	5.3	56
106	Direct electron transfer of glucose oxidase immobilized in an ionic liquid reconstituted cellulose–carbon nanotube matrix. Bioelectrochemistry, 2009, 77, 64-68.	2.4	70
107	Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chemical Society Reviews, 2009, 38, 1926.	18.7	395
108	Activated Carbon Cloth as Anode for Sulfate Removal in a Microbial Fuel Cell. Environmental Science & Technology, 2008, 42, 4971-4976.	4.6	236

#	Article	IF	CITATIONS
109	Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells. Applied Catalysis B: Environmental, 2007, 74, 261-269.	10.8	121
110	Challenges and Constraints of Using Oxygen Cathodes in Microbial Fuel Cells. Environmental Science & Technology, 2006, 40, 5193-5199.	4.6	479
111	Interfacing Electrocatalysis and Biocatalysis with Tungsten Carbide: A High-Performance, Noble-Metal-Free Microbial Fuel Cell. Angewandte Chemie - International Edition, 2006, 45, 6658-6661.	7.2	155
112	A novel comb-like copolymer based polymer electrolyte for Li batteries. Journal of Power Sources, 2005, 139, 223-229.	4.0	24
113	Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications, 2005, 7, 1405-1410.	2.3	466
114	Conducting polymer polypyrrole supported bilayer lipid membranes. Biosensors and Bioelectronics, 2005, 20, 1373-1379.	5.3	43
115	Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes. Biosensors and Bioelectronics, 2005, 21, 159-166.	5.3	70
116	A Low-Cost Biofuel Cell with pH-Dependent Power Output Based on Porous Carbon as Matrix. Chemistry - A European Journal, 2005, 11, 4970-4974.	1.7	73
117	The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosensors and Bioelectronics, 2005, 21, 984-988.	5.3	532
118	Parallel Alignment of Carbon Nanotubes Induced with Inorganic Molecules. Langmuir, 2005, 21, 12068-12071.	1.6	5
119	Conductive Property of Multiwall Carbon Nanotubes-PEO-Salt Nanocomposite Film. Electrochemical and Solid-State Letters, 2004, 7, E48.	2.2	4
120	Electrochemical and Bioelectrochemistry Properties of Room-Temperature Ionic Liquids and Carbon Composite Materials. Analytical Chemistry, 2004, 76, 4960-4967.	3.2	289
121	Properties of a nanocomposite polymer electrolyte from an amorphous comb-branch polymer and nanoparticles. Journal of Solid State Electrochemistry, 2004, 8, 283-289.	1.2	13
122	Poly(vinylidene fluoride-hexafluoropropylene)/organo-montmorillonite clays nanocomposite lithium polymer electrolytes. Electrochimica Acta, 2004, 49, 3595-3602.	2.6	64
123	A Single Ionic Conductor Based on Nafion and Its Electrochemical Properties Used As Lithium Polymer Electrolyte. Journal of Physical Chemistry B, 2004, 108, 1365-1370.	1.2	58
124	Electrochemical and electrogenerated chemiluminescence of clay nanoparticles/Ru(bpy)32+ multilayer films on ITO electrodes. Analyst, The, 2004, 129, 657.	1.7	44
125	Electrochemistry and Electrogenerated Chemiluminescence of SiO2Nanoparticles/Tris(2,2â€~-bipyridyl)ruthenium(ΙΙ) Multilayer Films on Indium Tin Oxide Electrodes. Analytical Chemistry, 2004, 76, 184-191.	3.2	155
126	Electrochemical behavior of α-Keggin-type nanoparticles, Co(en)3(PMo12O40), in polyethylene glycol. Journal of Solid State Electrochemistry, 2003, 7, 337-343.	1.2	2

#	Article	IF	CITATIONS
127	Voltage Reversal of Microbial Fuel Cells Stacked in Serial. Key Engineering Materials, 0, 609-610, 1422-1427.	0.4	2